IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v594y2021i7861d10.1038_s41586-021-03555-7.html
   My bibliography  Save this article

Structure of the human Mediator–RNA polymerase II pre-initiation complex

Author

Listed:
  • Srinivasan Rengachari

    (Max Planck Institute for Biophysical Chemistry)

  • Sandra Schilbach

    (Max Planck Institute for Biophysical Chemistry)

  • Shintaro Aibara

    (Max Planck Institute for Biophysical Chemistry)

  • Christian Dienemann

    (Max Planck Institute for Biophysical Chemistry)

  • Patrick Cramer

    (Max Planck Institute for Biophysical Chemistry)

Abstract

Mediator is a conserved coactivator complex that enables the regulated initiation of transcription at eukaryotic genes1–3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate the phosphorylation of RNA polymerase II (Pol II) and promoter escape1–6. Here we prepare a recombinant version of human Mediator, reconstitute a 50-subunit Mediator–PIC complex and determine the structure of the complex by cryo-electron microscopy. The head module of Mediator contacts the stalk of Pol II and the general transcription factors TFIIB and TFIIE, resembling the Mediator–PIC interactions observed in the corresponding complex in yeast7–9. The metazoan subunits MED27–MED30 associate with exposed regions in MED14 and MED17 to form the proximal part of the Mediator tail module that binds activators. Mediator positions the flexibly linked cyclin-dependent kinase (CDK)-activating kinase of the general transcription factor TFIIH near the linker to the C-terminal repeat domain of Pol II. The Mediator shoulder domain holds the CDK-activating kinase subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook domains reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of the CDK7 kinase to allosterically stimulate phosphorylation of the C-terminal domain.

Suggested Citation

  • Srinivasan Rengachari & Sandra Schilbach & Shintaro Aibara & Christian Dienemann & Patrick Cramer, 2021. "Structure of the human Mediator–RNA polymerase II pre-initiation complex," Nature, Nature, vol. 594(7861), pages 129-133, June.
  • Handle: RePEc:nat:nature:v:594:y:2021:i:7861:d:10.1038_s41586-021-03555-7
    DOI: 10.1038/s41586-021-03555-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03555-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03555-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Flores-Solis & Irina P. Lushpinskaia & Anton A. Polyansky & Arya Changiarath & Marc Boehning & Milana Mirkovic & James Walshe & Lisa M. Pietrek & Patrick Cramer & Lukas S. Stelzl & Bojan Zagrovi, 2023. "Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:594:y:2021:i:7861:d:10.1038_s41586-021-03555-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.