IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50891-z.html
   My bibliography  Save this article

Structural basis of Cdk7 activation by dual T-loop phosphorylation

Author

Listed:
  • Robert Düster

    (University of Bonn
    Icahn School of Medicine at Mount Sinai)

  • Kanchan Anand

    (University of Bonn)

  • Sophie C. Binder

    (University of Bonn)

  • Maximilian Schmitz

    (University of Bonn)

  • Karl Gatterdam

    (University of Bonn)

  • Robert P. Fisher

    (Icahn School of Medicine at Mount Sinai)

  • Matthias Geyer

    (University of Bonn)

Abstract

Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.

Suggested Citation

  • Robert Düster & Kanchan Anand & Sophie C. Binder & Maximilian Schmitz & Karl Gatterdam & Robert P. Fisher & Matthias Geyer, 2024. "Structural basis of Cdk7 activation by dual T-loop phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50891-z
    DOI: 10.1038/s41467-024-50891-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50891-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50891-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiara Ghezzi & Alicia Wong & Bao Ying Chen & Bernard Ribalet & Robert Damoiseaux & Peter M. Clark, 2019. "A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Victoria I. Cushing & Adrian F. Koh & Junjie Feng & Kaste Jurgaityte & Alexander Bondke & Sebastian H. B. Kroll & Marion Barbazanges & Bodo Scheiper & Ash K. Bahl & Anthony G. M. Barrett & Simak Ali &, 2024. "High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Eric B. Gibbs & Feiyue Lu & Bede Portz & Michael J. Fisher & Brenda P. Medellin & Tatiana N. Laremore & Yan Jessie Zhang & David S. Gilmour & Scott A. Showalter, 2017. "Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    4. Nadine Czudnochowski & Christian A. Bösken & Matthias Geyer, 2012. "Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition," Nature Communications, Nature, vol. 3(1), pages 1-12, January.
    5. Jian Chen & Stéphane Larochelle & Xiaoming Li & Beat Suter, 2003. "Xpd/Ercc2 regulates CAK activity and mitotic progression," Nature, Nature, vol. 424(6945), pages 228-232, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin Hsu & Qiming Duan & Daniel S. Day & Xin Luo & Sarah McMahon & Yu Huang & Zachary B. Feldman & Zhen Jiang & Tinghu Zhang & Yanke Liang & Michael Alexanian & Arun Padmanabhan & Jonathan D. Brown , 2022. "Targeting transcription in heart failure via CDK7/12/13 inhibition," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Ines H. Kaltheuner & Kanchan Anand & Jonas Moecking & Robert Düster & Jinhua Wang & Nathanael S. Gray & Matthias Geyer, 2021. "Abemaciclib is a potent inhibitor of DYRK1A and HIP kinases involved in transcriptional regulation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. David Flores-Solis & Irina P. Lushpinskaia & Anton A. Polyansky & Arya Changiarath & Marc Boehning & Milana Mirkovic & James Walshe & Lisa M. Pietrek & Patrick Cramer & Lukas S. Stelzl & Bojan Zagrovi, 2023. "Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Anniina Vihervaara & Philip Versluis & Samu V. Himanen & John T. Lis, 2023. "PRO-IP-seq tracks molecular modifications of engaged Pol II complexes at nucleotide resolution," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50891-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.