IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41407-2.html
   My bibliography  Save this article

Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types

Author

Listed:
  • Gregory J. Salimando

    (University of Pennsylvania
    University of Pennsylvania)

  • Sébastien Tremblay

    (University of Pennsylvania
    University of Pennsylvania)

  • Blake A. Kimmey

    (University of Pennsylvania
    University of Pennsylvania)

  • Jia Li

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Sophie A. Rogers

    (University of Pennsylvania
    University of Pennsylvania)

  • Jessica A. Wojick

    (University of Pennsylvania
    University of Pennsylvania)

  • Nora M. McCall

    (University of Pennsylvania
    University of Pennsylvania)

  • Lisa M. Wooldridge

    (University of Pennsylvania
    University of Pennsylvania)

  • Amrith Rodrigues

    (University of Pennsylvania)

  • Tito Borner

    (University of Pennsylvania
    University of Pennsylvania)

  • Kristin L. Gardiner

    (University of Pennsylvania)

  • Selwyn S. Jayakar

    (Boston Children’s Hospital and Harvard Medical School)

  • Ilyas Singeç

    (National Institutes of Health)

  • Clifford J. Woolf

    (Boston Children’s Hospital and Harvard Medical School)

  • Matthew R. Hayes

    (University of Pennsylvania
    University of Pennsylvania)

  • Bart C. De Jonghe

    (University of Pennsylvania
    University of Pennsylvania)

  • F. Christian Bennett

    (University of Pennsylvania
    Children’s Hospital of Philadelphia)

  • Mariko L. Bennett

    (Children’s Hospital of Philadelphia)

  • Julie A. Blendy

    (University of Pennsylvania)

  • Michael L. Platt

    (University of Pennsylvania
    University of Pennsylvania)

  • Kate Townsend Creasy

    (University of Pennsylvania
    University of Pennsylvania)

  • William R. Renthal

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Charu Ramakrishnan

    (Stanford University)

  • Karl Deisseroth

    (Stanford University
    Stanford University
    Stanford University
    Stanford University)

  • Gregory Corder

    (University of Pennsylvania
    University of Pennsylvania)

Abstract

With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.

Suggested Citation

  • Gregory J. Salimando & Sébastien Tremblay & Blake A. Kimmey & Jia Li & Sophie A. Rogers & Jessica A. Wojick & Nora M. McCall & Lisa M. Wooldridge & Amrith Rodrigues & Tito Borner & Kristin L. Gardiner, 2023. "Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41407-2
    DOI: 10.1038/s41467-023-41407-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41407-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41407-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel C. Castro & Corinna S. Oswell & Eric T. Zhang & Christian E. Pedersen & Sean C. Piantadosi & Mark A. Rossi & Avery C. Hunker & Anthony Guglin & Jose A. Morón & Larry S. Zweifel & Garret D. Stub, 2021. "An endogenous opioid circuit determines state-dependent reward consumption," Nature, Nature, vol. 598(7882), pages 646-651, October.
    2. Wulf Haubensak & Prabhat S. Kunwar & Haijiang Cai & Stephane Ciocchi & Nicholas R. Wall & Ravikumar Ponnusamy & Jonathan Biag & Hong-Wei Dong & Karl Deisseroth & Edward M. Callaway & Michael S. Fansel, 2010. "Genetic dissection of an amygdala microcircuit that gates conditioned fear," Nature, Nature, vol. 468(7321), pages 270-276, November.
    3. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    4. Aritra Bhattacherjee & Mohamed Nadhir Djekidel & Renchao Chen & Wenqiang Chen & Luis M. Tuesta & Yi Zhang, 2019. "Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuhiro Kon & Koji L. Ode & Tomoyuki Mano & Hiroshi Fujishima & Riina R. Takahashi & Daisuke Tone & Chika Shimizu & Shinnosuke Shiono & Saori Yada & Kyoko Matsuzawa & Shota Y. Yoshida & Junko Yoshida, 2024. "Cortical parvalbumin neurons are responsible for homeostatic sleep rebound through CaMKII activation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yuzhou Chang & Jixin Liu & Yi Jiang & Anjun Ma & Yao Yu Yeo & Qi Guo & Megan McNutt & Jordan E. Krull & Scott J. Rodig & Dan H. Barouch & Garry P. Nolan & Dong Xu & Sizun Jiang & Zihai Li & Bingqiang , 2024. "Graph Fourier transform for spatial omics representation and analyses of complex organs," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    5. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. April R. Kriebel & Joshua D. Welch, 2022. "UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Luis Flores Horgue & Alexis Assens & Leon Fodoulian & Leonardo Marconi & Joël Tuberosa & Alexander Haider & Madlaina Boillat & Alan Carleton & Ivan Rodriguez, 2022. "Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Giuseppe Chindemi & Marwan Abdellah & Oren Amsalem & Ruth Benavides-Piccione & Vincent Delattre & Michael Doron & András Ecker & Aurélien T. Jaquier & James King & Pramod Kumbhar & Caitlin Monney & Ro, 2022. "A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    15. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    16. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Vincent Geldhof & Laura P. M. H. Rooij & Liliana Sokol & Jacob Amersfoort & Maxim Schepper & Katerina Rohlenova & Griet Hoste & Adriaan Vanderstichele & Anne-Marie Delsupehe & Edoardo Isnaldi & Naima , 2022. "Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Ziqi Zhang & Haoran Sun & Ragunathan Mariappan & Xi Chen & Xinyu Chen & Mika S. Jain & Mirjana Efremova & Sarah A. Teichmann & Vaibhav Rajan & Xiuwei Zhang, 2023. "scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Kelsey M. Vollmer & Lisa M. Green & Roger I. Grant & Kion T. Winston & Elizabeth M. Doncheck & Christopher W. Bowen & Jacqueline E. Paniccia & Rachel E. Clarke & Annika Tiller & Preston N. Siegler & B, 2022. "An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41407-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.