IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42623-6.html
   My bibliography  Save this article

Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state

Author

Listed:
  • In-Jee You

    (Fralin Biomedical Research Institute at VTC
    FBRI Center for Neurobiology Research)

  • Yeeun Bae

    (Fralin Biomedical Research Institute at VTC
    FBRI Center for Neurobiology Research
    Virginia Polytechnic Institute and State University)

  • Alec R. Beck

    (Fralin Biomedical Research Institute at VTC
    FBRI Center for Neurobiology Research)

  • Sora Shin

    (Fralin Biomedical Research Institute at VTC
    FBRI Center for Neurobiology Research
    Virginia Polytechnic Institute and State University)

Abstract

Psychological stressors, like the nearby presence of a predator, can be strong enough to induce physiological/hormonal alterations, leading to appetite changes. However, little is known about how threats can alter feeding-related hypothalamic circuit functions. Here, we found that proenkephalin (Penk)-expressing lateral hypothalamic (LHPenk) neurons of mice exposed to predator scent stimulus (PSS) show sensitized responses to high-fat diet (HFD) eating, whereas silencing of the same neurons normalizes PSS-induced HFD overconsumption associated with a negative emotional state. Downregulation of endogenous enkephalin peptides in the LH is crucial for inhibiting the neuronal and behavioral changes developed after PSS exposure. Furthermore, elevated corticosterone after PSS contributes to enhance the reactivity of glucocorticoid receptor (GR)-containing LHPenk neurons to HFD, whereas pharmacological inhibition of GR in the LH suppresses PSS-induced maladaptive behavioral responses. We have thus identified the LHPenk neurons as a critical component in the threat-induced neuronal adaptation that leads to emotional overconsumption.

Suggested Citation

  • In-Jee You & Yeeun Bae & Alec R. Beck & Sora Shin, 2023. "Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42623-6
    DOI: 10.1038/s41467-023-42623-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42623-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42623-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Louisa E. Linders & Lefkothea Patrikiou & Mariano Soiza-Reilly & Evelien H. S. Schut & Bram F. Schaffelaar & Leonard Böger & Inge G. Wolterink-Donselaar & Mieneke C. M. Luijendijk & Roger A. H. Adan &, 2022. "Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Patricia Bonnavion & Alexander C. Jackson & Matthew E. Carter & Luis de Lecea, 2015. "Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses," Nature Communications, Nature, vol. 6(1), pages 1-14, May.
    3. Ann Kennedy & Prabhat S. Kunwar & Ling-yun Li & Stefanos Stagkourakis & Daniel A. Wagenaar & David J. Anderson, 2020. "Stimulus-specific hypothalamic encoding of a persistent defensive state," Nature, Nature, vol. 586(7831), pages 730-734, October.
    4. Jinho Jhang & Hyoeun Lee & Min Soo Kang & Han-Sol Lee & Hyungju Park & Jin-Hee Han, 2018. "Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    5. J. Nicholas Betley & Shengjin Xu & Zhen Fang Huang Cao & Rong Gong & Christopher J. Magnus & Yang Yu & Scott M. Sternson, 2015. "Neurons for hunger and thirst transmit a negative-valence teaching signal," Nature, Nature, vol. 521(7551), pages 180-185, May.
    6. Daniel C. Castro & Corinna S. Oswell & Eric T. Zhang & Christian E. Pedersen & Sean C. Piantadosi & Mark A. Rossi & Avery C. Hunker & Anthony Guglin & Jose A. Morón & Larry S. Zweifel & Garret D. Stub, 2021. "An endogenous opioid circuit determines state-dependent reward consumption," Nature, Nature, vol. 598(7882), pages 646-651, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhang & Jiayi Shen & Famin Xie & Zhiwei Liu & Fangfang Yin & Mingxiu Cheng & Liang Wang & Meiting Cai & Herbert Herzog & Ping Wu & Zhi Zhang & Cheng Zhan & Tiemin Liu, 2024. "Feedforward inhibition of stress by brainstem neuropeptide Y neurons," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Qin Wang & Rui-Yue Sun & Jia-Xue Hu & Yan-Hui Sun & Chun-Yue Li & Huiqian Huang & Hao Wang & Xiao-Ming Li, 2024. "Hypothalamic-hindbrain circuit for consumption-induced fear regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jing-Jing Yan & Xiao-Jing Ding & Ting He & Ai-Xiao Chen & Wen Zhang & Zi-Xian Yu & Xin-Yu Cheng & Chuan-Yao Wei & Qiao-Dan Hu & Xiao-Yao Liu & Yan-Li Zhang & Mengge He & Zhi-Yong Xie & Xi Zha & Chun X, 2022. "A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Keshav S. Subramanian & Logan Tierno Lauer & Anna M. R. Hayes & Léa Décarie-Spain & Kara McBurnett & Anna C. Nourbash & Kristen N. Donohue & Alicia E. Kao & Alexander G. Bashaw & Denis Burdakov & Emil, 2023. "Hypothalamic melanin-concentrating hormone neurons integrate food-motivated appetitive and consummatory processes in rats," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Young Hee Lee & Yu-Been Kim & Kyu Sik Kim & Mirae Jang & Ha Young Song & Sang-Ho Jung & Dong-Soo Ha & Joon Seok Park & Jaegeon Lee & Kyung Min Kim & Deok-Hyeon Cheon & Inhyeok Baek & Min-Gi Shin & Eun, 2023. "Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Kelsey M. Vollmer & Lisa M. Green & Roger I. Grant & Kion T. Winston & Elizabeth M. Doncheck & Christopher W. Bowen & Jacqueline E. Paniccia & Rachel E. Clarke & Annika Tiller & Preston N. Siegler & B, 2022. "An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Mireia Montaner & Jessica Denom & Vincent Simon & Wanqing Jiang & Marie K. Holt & Daniel I. Brierley & Claude Rouch & Ewout Foppen & Nadim Kassis & David Jarriault & Dawood Khan & Louise Eygret & Fran, 2024. "A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Lan Pang & Zhiguo Liu & Jiani Chen & Zhi Dong & Sicong Zhou & Qichao Zhang & Yueqi Lu & Yifeng Sheng & Xuexin Chen & Jianhua Huang, 2022. "Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Gregory J. Salimando & Sébastien Tremblay & Blake A. Kimmey & Jia Li & Sophie A. Rogers & Jessica A. Wojick & Nora M. McCall & Lisa M. Wooldridge & Amrith Rodrigues & Tito Borner & Kristin L. Gardiner, 2023. "Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    12. Tamás Füzesi & Neilen P. Rasiah & David G. Rosenegger & Mijail Rojas-Carvajal & Taylor Chomiak & Núria Daviu & Leonardo A. Molina & Kathryn Simone & Toni-Lee Sterley & Wilten Nicola & Jaideep S. Bains, 2023. "Hypothalamic CRH neurons represent physiological memory of positive and negative experience," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Liang, Xiaozhen & Hong, Chenxi & Chen, Jiaqi & Wang, Yingying & Yang, Mingge, 2024. "A hybrid forecasting architecture for air passenger demand considering search engine data and spatial effect," Journal of Air Transport Management, Elsevier, vol. 118(C).
    14. Johanni Brea & Nicola S. Clayton & Wulfram Gerstner, 2023. "Computational models of episodic-like memory in food-caching birds," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42623-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.