IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33136-9.html
   My bibliography  Save this article

Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity

Author

Listed:
  • Dehua Peng

    (Wuhan University
    Wuhan University
    Wuhan University
    Hubei Luojia Laboratory)

  • Zhipeng Gui

    (Wuhan University
    Wuhan University
    Hubei Luojia Laboratory)

  • Dehe Wang

    (Wuhan University
    Wuhan University)

  • Yuncheng Ma

    (Wuhan University
    Wuhan University)

  • Zichen Huang

    (Wuhan University
    Wuhan University)

  • Yu Zhou

    (Wuhan University
    Wuhan University)

  • Huayi Wu

    (Wuhan University
    Wuhan University
    Hubei Luojia Laboratory)

Abstract

Clustering is a powerful machine learning method for discovering similar patterns according to the proximity of elements in feature space. It is widely used in computer science, bioscience, geoscience, and economics. Although the state-of-the-art partition-based and connectivity-based clustering methods have been developed, weak connectivity and heterogeneous density in data impede their effectiveness. In this work, we propose a boundary-seeking Clustering algorithm using the local Direction Centrality (CDC). It adopts a density-independent metric based on the distribution of K-nearest neighbors (KNNs) to distinguish between internal and boundary points. The boundary points generate enclosed cages to bind the connections of internal points, thereby preventing cross-cluster connections and separating weakly-connected clusters. We demonstrate the validity of CDC by detecting complex structured clusters in challenging synthetic datasets, identifying cell types from single-cell RNA sequencing (scRNA-seq) and mass cytometry (CyTOF) data, recognizing speakers on voice corpuses, and testifying on various types of real-world benchmarks.

Suggested Citation

  • Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33136-9
    DOI: 10.1038/s41467-022-33136-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33136-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33136-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    2. Hao Chen & Mai Chan Lau & Michael Thomas Wong & Evan W Newell & Michael Poidinger & Jinmiao Chen, 2016. "Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yuzhou Chang & Jixin Liu & Yi Jiang & Anjun Ma & Yao Yu Yeo & Qi Guo & Megan McNutt & Jordan E. Krull & Scott J. Rodig & Dan H. Barouch & Garry P. Nolan & Dong Xu & Sizun Jiang & Zihai Li & Bingqiang , 2024. "Graph Fourier transform for spatial omics representation and analyses of complex organs," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Víctor A. Arrieta & Andrew Gould & Kwang-Soo Kim & Karl J. Habashy & Crismita Dmello & Gustavo I. Vázquez-Cervantes & Irina Palacín-Aliana & Graysen McManus & Christina Amidei & Cristal Gomez & Silpol, 2024. "Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. April R. Kriebel & Joshua D. Welch, 2022. "UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Luis Flores Horgue & Alexis Assens & Leon Fodoulian & Leonardo Marconi & Joël Tuberosa & Alexander Haider & Madlaina Boillat & Alan Carleton & Ivan Rodriguez, 2022. "Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Giuseppe Chindemi & Marwan Abdellah & Oren Amsalem & Ruth Benavides-Piccione & Vincent Delattre & Michael Doron & András Ecker & Aurélien T. Jaquier & James King & Pramod Kumbhar & Caitlin Monney & Ro, 2022. "A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Ross J Burton & Raya Ahmed & Simone M Cuff & Sarah Baker & Andreas Artemiou & Matthias Eberl, 2021. "CytoPy: An autonomous cytometry analysis framework," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-21, June.
    13. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    14. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    15. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Vincent Geldhof & Laura P. M. H. Rooij & Liliana Sokol & Jacob Amersfoort & Maxim Schepper & Katerina Rohlenova & Griet Hoste & Adriaan Vanderstichele & Anne-Marie Delsupehe & Edoardo Isnaldi & Naima , 2022. "Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Ziqi Zhang & Haoran Sun & Ragunathan Mariappan & Xi Chen & Xinyu Chen & Mika S. Jain & Mirjana Efremova & Sarah A. Teichmann & Vaibhav Rajan & Xiuwei Zhang, 2023. "scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Xiaomeng Wan & Jiashun Xiao & Sindy Sing Ting Tam & Mingxuan Cai & Ryohichi Sugimura & Yang Wang & Xiang Wan & Zhixiang Lin & Angela Ruohao Wu & Can Yang, 2023. "Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33136-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.