IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v4y2021i3d10.1038_s41893-020-00635-w.html
   My bibliography  Save this article

Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2

Author

Listed:
  • Jinwei Xu

    (Stanford University)

  • Xueli Zheng

    (Stanford University)

  • Zhiping Feng

    (Stanford University School of Medicine)

  • Zhiyi Lu

    (Stanford University)

  • Zewen Zhang

    (Stanford University)

  • William Huang

    (Stanford University)

  • Yanbin Li

    (Stanford University)

  • Djordje Vuckovic

    (Stanford University)

  • Yuanqing Li

    (Stanford University)

  • Sheng Dai

    (University of California Irvine)

  • Guangxu Chen

    (Stanford University)

  • Kecheng Wang

    (Stanford University)

  • Hansen Wang

    (Stanford University)

  • James K. Chen

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • William Mitch

    (Stanford University)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

The presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although advanced oxidation processes that rely on highly reactive radicals to destroy organic contaminants are appealing treatment options, substantial energy and chemical inputs limit their practical applications. Here we demonstrate that Cu single atoms incorporated in graphitic carbon nitride can catalytically activate H2O2 to generate hydroxyl radicals at pH 7.0 without energy input, and show robust stability within a filtration device. We further design an electrolysis reactor for the on-site generation of H2O2 from air, water and renewable energy. Coupling the single-atom catalytic filter and the H2O2 electrolytic generator in tandem delivers a wastewater treatment system. These findings provide a promising path toward reducing the energy and chemical demands of advanced oxidation processes, as well as enabling their implementation in remote areas and isolated communities.

Suggested Citation

  • Jinwei Xu & Xueli Zheng & Zhiping Feng & Zhiyi Lu & Zewen Zhang & William Huang & Yanbin Li & Djordje Vuckovic & Yuanqing Li & Sheng Dai & Guangxu Chen & Kecheng Wang & Hansen Wang & James K. Chen & W, 2021. "Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2," Nature Sustainability, Nature, vol. 4(3), pages 233-241, March.
  • Handle: RePEc:nat:natsus:v:4:y:2021:i:3:d:10.1038_s41893-020-00635-w
    DOI: 10.1038/s41893-020-00635-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-00635-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-00635-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Qi Huang & Baokai Xia & Ming Li & Hongxin Guan & Markus Antonietti & Sheng Chen, 2024. "Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Zhenzhen Liu & Helong Li & Xueying Gao & Xuan Guo & Shuizhong Wang & Yunming Fang & Guoyong Song, 2022. "Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Peng Jiang & Ludan Zhang & Xiaolong Liu & Chenliang Ye & Peng Zhu & Ting Tan & Dingsheng Wang & Yuguang Wang, 2024. "Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Qi, Xingang & Ren, Zhenhua & Meng, Fanrui & Lu, Libo & Liu, Fan & Li, Xunjun & Jin, Hui & Chen, Yunan & Guo, Liejin, 2024. "Thermodynamic and environmental analysis of an integrated multi-effect evaporation and organic wastewater supercritical water gasification system for hydrogen production," Applied Energy, Elsevier, vol. 357(C).
    9. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Chao-Hai Gu & Song Wang & Ai-Yong Zhang & Chang Liu & Jun Jiang & Han-Qing Yu, 2024. "Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Xu Zhang & Hui Su & Peixin Cui & Yongyong Cao & Zhenyuan Teng & Qitao Zhang & Yang Wang & Yibo Feng & Ran Feng & Jixiang Hou & Xiyuan Zhou & Peijie Ma & Hanwen Hu & Kaiwen Wang & Cong Wang & Liyong Ga, 2023. "Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:4:y:2021:i:3:d:10.1038_s41893-020-00635-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.