IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40996-2.html
   My bibliography  Save this article

A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy

Author

Listed:
  • Xiaoying Kang

    (Nankai University)

  • Yuan Zhang

    (Nankai University)

  • Jianwen Song

    (Nankai University)

  • Lu Wang

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Wen Li

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Ji Qi

    (Nankai University)

  • Ben Zhong Tang

    (The Chinese University of Hong Kong)

Abstract

Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.

Suggested Citation

  • Xiaoying Kang & Yuan Zhang & Jianwen Song & Lu Wang & Wen Li & Ji Qi & Ben Zhong Tang, 2023. "A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40996-2
    DOI: 10.1038/s41467-023-40996-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40996-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40996-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianguang Ding & Fei Peng & Jun Zhou & Wenbin Gong & Garaj Slaven & Kian Ping Loh & Chwee Teck Lim & David Tai Leong, 2019. "Defect engineered bioactive transition metals dichalcogenides quantum dots," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Xiangzhao Ai & Chris Jun Hui Ho & Junxin Aw & Amalina Binte Ebrahim Attia & Jing Mu & Yu Wang & Xiaoyong Wang & Yong Wang & Xiaogang Liu & Huabing Chen & Mingyuan Gao & Xiaoyuan Chen & Edwin K.L. Yeow, 2016. "In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    3. Chi Zhang & Ziling Zeng & Dong Cui & Shasha He & Yuyan Jiang & Jingchao Li & Jiaguo Huang & Kanyi Pu, 2021. "Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Ji Qi & Chao Chen & Xiaoyan Zhang & Xianglong Hu & Shenglu Ji & Ryan T. K. Kwok & Jacky W. Y. Lam & Dan Ding & Ben Zhong Tang, 2018. "Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Zhaohan Wei & Xiaoqiong Zhang & Tuying Yong & Nana Bie & Guiting Zhan & Xin Li & Qingle Liang & Jianye Li & Jingjing Yu & Gang Huang & Yuchen Yan & Zelong Zhang & Bixiang Zhang & Lu Gan & Bo Huang & X, 2021. "Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    6. Yanjuan Huang & Zilin Guan & Xiuling Dai & Yifeng Shen & Qin Wei & Lingling Ren & Jingwen Jiang & Zhanghong Xiao & Yali Jiang & Di Liu & Zeqian Huang & Xiaoyu Xu & Yong Luo & Chunshun Zhao, 2021. "Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    7. Ji Qi & Leyan Feng & Xiaoyan Zhang & Haoke Zhang & Liwen Huang & Yutong Zhou & Zheng Zhao & Xingchen Duan & Fei Xu & Ryan T. K. Kwok & Jacky W. Y. Lam & Dan Ding & Xue Xue & Ben Zhong Tang, 2021. "Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianwen Song & Xiaoying Kang & Lu Wang & Dan Ding & Deling Kong & Wen Li & Ji Qi, 2023. "Near-infrared-II photoacoustic imaging and photo-triggered synergistic treatment of thrombosis via fibrin-specific homopolymer nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Xin Li & Tuying Yong & Zhaohan Wei & Nana Bie & Xiaoqiong Zhang & Guiting Zhan & Jianye Li & Jiaqi Qin & Jingjing Yu & Bixiang Zhang & Lu Gan & Xiangliang Yang, 2022. "Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Chi Zhang & Jingsheng Huang & Ziling Zeng & Shasha He & Penghui Cheng & Jingchao Li & Kanyi Pu, 2022. "Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Jiefei Wang & Ping Shangguan & Xiaoyu Chen & Yong Zhong & Ming Lin & Mu He & Yisheng Liu & Yuan Zhou & Xiaobin Pang & Lulu Han & Mengya Lu & Xiao Wang & Yang Liu & Huiqing Yang & Jingyun Chen & Chenhu, 2024. "A one-two punch targeting reactive oxygen species and fibril for rescuing Alzheimer’s disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Zhaoting Li & Fanyi Mo & Yixin Wang & Wen Li & Yu Chen & Jun Liu & Ting-Jing Chen-Mayfield & Quanyin Hu, 2022. "Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Lin-Lin Yang & Haoran Wang & Jianyu Zhang & Bo Wu & Qiyao Li & Jie-Ying Chen & A-Ling Tang & Jacky W. Y. Lam & Zheng Zhao & Song Yang & Ben Zhong Tang, 2024. "Understanding the AIE phenomenon of nonconjugated rhodamine derivatives via aggregation-induced molecular conformation change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Tingting Cui & Yu Zhang & Geng Qin & Yue Wei & Jie Yang & Ying Huang & Jinsong Ren & Xiaogang Qu, 2023. "A neutrophil mimicking metal-porphyrin-based nanodevice loaded with porcine pancreatic elastase for cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Nicolas Millet & Norma V. Solis & Diane Aguilar & Michail S. Lionakis & Robert T. Wheeler & Nicholas Jendzjowsky & Marc Swidergall, 2022. "IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Mengmeng Xia & Qiyue Wang & Yamin Liu & Chunyan Fang & Bo Zhang & Shengfei Yang & Fu Zhou & Peihua Lin & Mingzheng Gu & Canyu Huang & Xiaojun Zhang & Fangyuan Li & Hongying Liu & Guangfeng Wang & Dais, 2024. "Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Ziyang Cao & Dongdong Li & Liang Zhao & Mengting Liu & Pengyue Ma & Yingli Luo & Xianzhu Yang, 2022. "Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Zhi Wang & Yan-Jie Zhu & Bao-Liang Han & Yi-Zhi Li & Chen-Ho Tung & Di Sun, 2023. "A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Peihua Lin & Bo Zhang & Hongli Yang & Shengfei Yang & Pengpeng Xue & Ying Chen & Shiyi Yu & Jichao Zhang & Yixiao Zhang & Liwei Chen & Chunhai Fan & Fangyuan Li & Daishun Ling, 2024. "An artificial protein modulator reprogramming neuronal protein functions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Yang Yang & Jinshu Huang & Wei Wei & Qin Zeng & Xipeng Li & Da Xing & Bo Zhou & Tao Zhang, 2022. "Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Xiaoqiong Zhang & Zhaohan Wei & Tuying Yong & Shiyu Li & Nana Bie & Jianye Li & Xin Li & Haojie Liu & Hang Xu & Yuchen Yan & Bixiang Zhang & Xiaoping Chen & Xiangliang Yang & Lu Gan, 2023. "Cell microparticles loaded with tumor antigen and resiquimod reprogram tumor-associated macrophages and promote stem-like CD8+ T cells to boost anti-PD-1 therapy," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    16. Bo Wang & Jing Chen & Julia S. Caserto & Xi Wang & Minglin Ma, 2022. "An in situ hydrogel-mediated chemo-immunometabolic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Bang Lin Li & Jun Jiang Luo & Hao Lin Zou & Qing-Meng Zhang & Liu-Bin Zhao & Hang Qian & Hong Qun Luo & David Tai Leong & Nian Bing Li, 2022. "Chiral nanocrystals grown from MoS2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40996-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.