IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40880-z.html
   My bibliography  Save this article

Weakened AMOC related to cooling and atmospheric circulation shifts in the last interglacial Eastern Mediterranean

Author

Listed:
  • Elan J. Levy

    (Max-Planck Institute for Chemistry
    The Geological Survey of Israel)

  • Hubert B. Vonhof

    (Max-Planck Institute for Chemistry)

  • Miryam Bar-Matthews

    (The Geological Survey of Israel)

  • Alfredo Martínez-García

    (Max-Planck Institute for Chemistry)

  • Avner Ayalon

    (The Geological Survey of Israel)

  • Alan Matthews

    (The Hebrew University of Jerusalem)

  • Vered Silverman

    (Weizmann Institute of Science)

  • Shira Raveh-Rubin

    (Weizmann Institute of Science)

  • Tami Zilberman

    (The Geological Survey of Israel)

  • Gal Yasur

    (The Geological Survey of Israel)

  • Mareike Schmitt

    (Max-Planck Institute for Chemistry)

  • Gerald H. Haug

    (Max-Planck Institute for Chemistry
    Department of Earth Sciences, ETH Zurich)

Abstract

There is limited understanding of temperature and atmospheric circulation changes that accompany an Atlantic Meridional Overturning Circulation (AMOC) slowdown beyond the North Atlantic realm. A Peqi’in Cave (Israel) speleothem dated to the last interglacial period (LIG), 129–116 thousand years ago (ka), together with a large modern rainfall monitoring dataset, serve as the base for investigating past AMOC slowdown effects on the Eastern Mediterranean. Here, we reconstruct LIG temperatures and rainfall source using organic proxies (TEX86) and fluid inclusion water d-excess. The TEX86 data show a stepwise cooling from 19.8 ± 0.2° (ca. 128–126 ka) to 16.5 ± 0.6 °C (ca. 124–123 ka), while d-excess values decrease abruptly (ca. 126 ka). The d-excess shift suggests that rainfall was derived from more zonal Mediterranean air flow during the weakened AMOC interval. Decreasing rainfall d-excess trends over the last 25 years raise the question whether similar atmospheric circulation changes are also occurring today.

Suggested Citation

  • Elan J. Levy & Hubert B. Vonhof & Miryam Bar-Matthews & Alfredo Martínez-García & Avner Ayalon & Alan Matthews & Vered Silverman & Shira Raveh-Rubin & Tami Zilberman & Gal Yasur & Mareike Schmitt & Ge, 2023. "Weakened AMOC related to cooling and atmospheric circulation shifts in the last interglacial Eastern Mediterranean," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40880-z
    DOI: 10.1038/s41467-023-40880-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40880-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40880-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. C. Tzedakis & R. N. Drysdale & V. Margari & L. C. Skinner & L. Menviel & R. H. Rhodes & A. S. Taschetto & D. A. Hodell & S. J. Crowhurst & J. C. Hellstrom & A. E. Fallick & J. O. Grimalt & J. F. Mc, 2018. "Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. J. Sakari Salonen & Karin F. Helmens & Jo Brendryen & Niina Kuosmanen & Minna Väliranta & Simon Goring & Mikko Korpela & Malin Kylander & Annemarie Philip & Anna Plikk & Hans Renssen & Miska Luoto, 2018. "Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. K. M. Grant & E. J. Rohling & M. Bar-Matthews & A. Ayalon & M. Medina-Elizalde & C. Bronk Ramsey & C. Satow & A. P. Roberts, 2012. "Rapid coupling between ice volume and polar temperature over the past 150,000 years," Nature, Nature, vol. 491(7426), pages 744-747, November.
    4. Ron Drori & Baruch Ziv & Hadas Saaroni & Adi Etkin & Efrat Sheffer, 2021. "Recent changes in the rain regime over the Mediterranean climate region of Israel," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    5. Niklas Boers, 2021. "Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 11(8), pages 680-688, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinwei Yan & Xu Zhang & Bo Liu & Huw T. Mithan & John Hellstrom & Sophie Nuber & Russell Drysdale & Junjie Wu & Fangyuan Lin & Ning Zhao & Yuao Zhang & Wengang Kang & Jianbao Liu, 2025. "Asynchronicity of deglacial permafrost thawing controlled by millennial-scale climate variability," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Sang-Ki Lee & Dongmin Kim & Fabian A. Gomez & Hosmay Lopez & Denis L. Volkov & Shenfu Dong & Rick Lumpkin & Stephen Yeager, 2024. "A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yusuke Yokoyama & Kurt Lambeck & Patrick Deckker & Tezer M. Esat & Jody M. Webster & Masao Nakada, 2022. "Towards solving the missing ice problem and the importance of rigorous model data comparisons," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    4. Lars Max & Dirk Nürnberg & Cristiano M. Chiessi & Marlene M. Lenz & Stefan Mulitza, 2022. "Subsurface ocean warming preceded Heinrich Events," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Denis L. Volkov & Ryan H. Smith & Rigoberto F. Garcia & David A. Smeed & Ben I. Moat & William E. Johns & Molly O. Baringer, 2024. "Florida Current transport observations reveal four decades of steady state," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Roger C. Creel & Jacqueline Austermann & Robert E. Kopp & Nicole S. Khan & Torsten Albrecht & Jonathan Kingslake, 2024. "Global mean sea level likely higher than present during the holocene," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Jens Terhaar & Linus Vogt & Nicholas P. Foukal, 2025. "Atlantic overturning inferred from air-sea heat fluxes indicates no decline since the 1960s," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Felix Ekardt & Marie Bärenwaldt, 2023. "The German Climate Verdict, Human Rights, Paris Target, and EU Climate Law," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    10. Fuzhi Lu & Huayu Lu & Yao Gu & Pengyu Lin & Zhengyao Lu & Qiong Zhang & Hongyan Zhang & Fan Yang & Xiaoyi Dong & Shuangwen Yi & Deliang Chen & Francesco S. R. Pausata & Maya Ben-Yami & Jennifer V. Mec, 2025. "Tipping point-induced abrupt shifts in East Asian hydroclimate since the Last Glacial Maximum," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    11. Maya Ben-Yami & Vanessa Skiba & Sebastian Bathiany & Niklas Boers, 2023. "Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Parker Albert & Ollier Clifford, 2021. "The Atlantic Meridional Overturning Circulation is not collapsing," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 163-167, September.
    13. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Giuseppe Lucia & Davide Zanchettin & Amos Winter & Hai Cheng & Angelo Rubino & Osmín J. Vásquez & Juan Pablo Bernal & Mario Cu-Xi & Matthew S. Lachniet, 2024. "Atlantic Ocean thermal forcing of Central American rainfall over 140,000 years," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Liu, Qianze & He, Wenping & Xie, Xiaoqiang & Mei, Ying & Sun, Hui & Boers, Niklas, 2024. "Early warning signal of abrupt change in sea level pressure based on changing spectral exponent," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    16. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Florian Diekert & Daniel Heyen & Frikk Nesje & Soheil Shayegh, 2024. "Balancing the Risk of Tipping: Early Warning Systems from Detection to Management," CESifo Working Paper Series 10892, CESifo.
    18. Friedrich, Leandro F. & Cezar, Édiblu S. & Colpo, Angélica B. & Tanzi, Boris N.R. & Lacidogna, Giuseppe & Iturrioz, Ignacio, 2024. "Identifying impending failure in heterogeneous materials: A study on acoustic emission time series," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    19. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    20. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40880-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.