IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009020.html
   My bibliography  Save this article

Early warning signal of abrupt change in sea level pressure based on changing spectral exponent

Author

Listed:
  • Liu, Qianze
  • He, Wenping
  • Xie, Xiaoqiang
  • Mei, Ying
  • Sun, Hui
  • Boers, Niklas

Abstract

Some studies show that when a dynamical system approaches its critical transition point, the changing spectral exponent can be used as an early warning signal. However, the performance of the spectral exponent may be influenced by different bifurcation types and spectral estimation techniques. We therefore test the performance of spectral exponents obtained from different spectral estimation algorithms in several prototypical stochastic dynamical models and find that the spectral exponent based on the Burg method outperforms other existing estimators, which helps to improve the spectral exponent's robustness in practical application. We also find that in most numerical experiments, the early warning ability of the Burg-method-based spectral exponent is obviously better than the lag-one autocorrelation (AC1) and variance for an upcoming tipping point. We then employ spectral exponents for early warning of the abrupt change of sea level pressure in the North Pacific Ocean in 1976–1977. The spectral exponents obtained by the Periodogram and Burg method show a decreasing trend since 1966, which we interpret as a warning signal hindcasting the transition. While the spectral exponent estimated by the Periodogram method is sensitive to the frequency band, the spectral exponent estimated via the Burg method exhibits a consistent trend across frequency bands. This further indicates the robustness of the spectral exponent obtained from the Burg method as an early warning signal of critical transition point.

Suggested Citation

  • Liu, Qianze & He, Wenping & Xie, Xiaoqiang & Mei, Ying & Sun, Hui & Boers, Niklas, 2024. "Early warning signal of abrupt change in sea level pressure based on changing spectral exponent," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009020
    DOI: 10.1016/j.chaos.2024.115350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luke D. Trusel & Sarah B. Das & Matthew B. Osman & Matthew J. Evans & Ben E. Smith & Xavier Fettweis & Joseph R. McConnell & Brice P. Y. Noël & Michiel R. Broeke, 2018. "Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming," Nature, Nature, vol. 564(7734), pages 104-108, December.
    2. Nathan Pacoureau & Cassandra L. Rigby & Peter M. Kyne & Richard B. Sherley & Henning Winker & John K. Carlson & Sonja V. Fordham & Rodrigo Barreto & Daniel Fernando & Malcolm P. Francis & Rima W. Jaba, 2021. "Half a century of global decline in oceanic sharks and rays," Nature, Nature, vol. 589(7843), pages 567-571, January.
    3. Niklas Boers, 2021. "Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 11(8), pages 680-688, August.
    4. Guttal, Vishwesha & Jayaprakash, C., 2007. "Impact of noise on bistable ecological systems," Ecological Modelling, Elsevier, vol. 201(3), pages 420-428.
    5. Katherine A Spielmann & Matthew A Peeples & Donna M Glowacki & Andrew Dugmore, 2016. "Early Warning Signals of Social Transformation: A Case Study from the US Southwest," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-18, October.
    6. Alexander Robinson & Reinhard Calov & Andrey Ganopolski, 2012. "Multistability and critical thresholds of the Greenland ice sheet," Nature Climate Change, Nature, vol. 2(6), pages 429-432, June.
    7. Nils Bochow & Anna Poltronieri & Alexander Robinson & Marisa Montoya & Martin Rypdal & Niklas Boers, 2023. "Author Correction: Overshooting the critical threshold for the Greenland ice sheet," Nature, Nature, vol. 623(7989), pages 18-18, November.
    8. Giovanni Forzieri & Vasilis Dakos & Nate G. McDowell & Alkama Ramdane & Alessandro Cescatti, 2022. "Emerging signals of declining forest resilience under climate change," Nature, Nature, vol. 608(7923), pages 534-539, August.
    9. Chris A. Boulton & Timothy M. Lenton & Niklas Boers, 2022. "Pronounced loss of Amazon rainforest resilience since the early 2000s," Nature Climate Change, Nature, vol. 12(3), pages 271-278, March.
    10. Nils Bochow & Anna Poltronieri & Alexander Robinson & Marisa Montoya & Martin Rypdal & Niklas Boers, 2023. "Overshooting the critical threshold for the Greenland ice sheet," Nature, Nature, vol. 622(7983), pages 528-536, October.
    11. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    12. Maarten C Boerlijst & Thomas Oudman & André M de Roos, 2013. "Catastrophic Collapse Can Occur without Early Warning: Examples of Silent Catastrophes in Structured Ecological Models," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Maya Ben-Yami & Vanessa Skiba & Sebastian Bathiany & Niklas Boers, 2023. "Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sandra Gschnaller, 2020. "The albedo loss from the melting of the Greenland ice sheet and the social cost of carbon," Climatic Change, Springer, vol. 163(4), pages 2201-2231, December.
    4. Zeng, Chunhua & Wang, Hua, 2012. "Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 52-58.
    5. Bian, Junhao & Ma, Zhiqin & Wang, Chunping & Huang, Tao & Zeng, Chunhua, 2024. "Early warning for spatial ecological system: Fractal dimension and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Florian Diekert & Daniel Heyen & Frikk Nesje & Soheil Shayegh, 2024. "Balancing the Risk of Tipping: Early Warning Systems from Detection to Management," CESifo Working Paper Series 10892, CESifo.
    7. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    8. Beatriz Arellano-Nava & Paul R. Halloran & Chris A. Boulton & James Scourse & Paul G. Butler & David J. Reynolds & Timothy M. Lenton, 2022. "Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Taylor Smith & Niklas Boers, 2023. "Global vegetation resilience linked to water availability and variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Zhang, Hongxia & Xu, Wei & Han, Ping & Qiao, Yan, 2020. "Stochastic dynamic balance of a bi-stable vegetation model with pulse control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    12. Thomas M. Bury & Daniel Dylewsky & Chris T. Bauch & Madhur Anand & Leon Glass & Alvin Shrier & Gil Bub, 2023. "Predicting discrete-time bifurcations with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Tessa Möller & Annika Ernest Högner & Carl-Friedrich Schleussner & Samuel Bien & Niklas H. Kitzmann & Robin D. Lamboll & Joeri Rogelj & Jonathan F. Donges & Johan Rockström & Nico Wunderling, 2024. "Achieving net zero greenhouse gas emissions critical to limit climate tipping risks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    15. Naoki Masuda & Kazuyuki Aihara & Neil G. MacLaren, 2024. "Anticipating regime shifts by mixing early warning signals from different nodes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    17. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    18. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    19. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.