IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40815-8.html
   My bibliography  Save this article

Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure

Author

Listed:
  • Shuo Dong

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft
    Chinese Academy of Sciences)

  • Samuel Beaulieu

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft
    Université de Bordeaux - CNRS - CEA, CELIA, UMR5107)

  • Malte Selig

    (Technische Universität Berlin)

  • Philipp Rosenzweig

    (Max Planck Institute for Solid State Research)

  • Dominik Christiansen

    (Technische Universität Berlin)

  • Tommaso Pincelli

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft)

  • Maciej Dendzik

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft
    KTH Royal Institute of Technology)

  • Jonas D. Ziegler

    (Technische Universität Dresden
    Photonics Laboratory, ETH Zürich)

  • Julian Maklar

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft)

  • R. Patrick Xian

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft
    University of Toronto)

  • Alexander Neef

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft)

  • Avaise Mohammed

    (Max Planck Institute for Solid State Research)

  • Armin Schulz

    (Max Planck Institute for Solid State Research)

  • Mona Stadler

    (University of Stuttgart)

  • Michael Jetter

    (University of Stuttgart)

  • Peter Michler

    (University of Stuttgart)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Hidenori Takagi

    (Max Planck Institute for Solid State Research
    University of Tokyo
    University of Stuttgart)

  • Ulrich Starke

    (Max Planck Institute for Solid State Research)

  • Alexey Chernikov

    (Technische Universität Dresden)

  • Martin Wolf

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft)

  • Hiro Nakamura

    (Max Planck Institute for Solid State Research
    University of Arkansas)

  • Andreas Knorr

    (Technische Universität Berlin)

  • Laurenz Rettig

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft)

  • Ralph Ernstorfer

    (Fritz-Haber-Institut der Max-Planck-Gesellschaft
    Technische Universität Berlin)

Abstract

Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.

Suggested Citation

  • Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40815-8
    DOI: 10.1038/s41467-023-40815-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40815-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40815-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Massicotte & P. Schmidt & F. Vialla & K. Watanabe & T. Taniguchi & K. J. Tielrooij & F. H. L. Koppens, 2016. "Photo-thermionic effect in vertical graphene heterostructures," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    2. Pasqual Rivera & John R. Schaibley & Aaron M. Jones & Jason S. Ross & Sanfeng Wu & Grant Aivazian & Philip Klement & Kyle Seyler & Genevieve Clark & Nirmal J. Ghimire & Jiaqiang Yan & D. G. Mandrus & , 2015. "Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
    3. Jiaqi He & Nardeep Kumar & Matthew Z. Bellus & Hsin-Ying Chiu & Dawei He & Yongsheng Wang & Hui Zhao, 2014. "Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
    4. A. Avsar & J. Y. Tan & T. Taychatanapat & J. Balakrishnan & G.K.W. Koon & Y. Yeo & J. Lahiri & A. Carvalho & A. S. Rodin & E.C.T. O’Farrell & G. Eda & A. H. Castro Neto & B. Özyilmaz, 2014. "Spin–orbit proximity effect in graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    5. Malte Selig & Gunnar Berghäuser & Archana Raja & Philipp Nagler & Christian Schüller & Tony F. Heinz & Tobias Korn & Alexey Chernikov & Ermin Malic & Andreas Knorr, 2016. "Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    6. J. Binder & J. Howarth & F. Withers & M. R. Molas & T. Taniguchi & K. Watanabe & C. Faugeras & A. Wysmolek & M. Danovich & V. I. Fal’ko & A. K. Geim & K. S. Novoselov & M. Potemski & A. Kozikov, 2019. "Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. Deji Akinwande & Cedric Huyghebaert & Ching-Hua Wang & Martha I. Serna & Stijn Goossens & Lain-Jong Li & H.-S. Philip Wong & Frank H. L. Koppens, 2019. "Graphene and two-dimensional materials for silicon technology," Nature, Nature, vol. 573(7775), pages 507-518, September.
    8. Matthias Baudisch & Andrea Marini & Joel D. Cox & Tony Zhu & Francisco Silva & Stephan Teichmann & Mathieu Massicotte & Frank Koppens & Leonid S. Levitov & F. Javier García de Abajo & Jens Biegert, 2018. "Ultrafast nonlinear optical response of Dirac fermions in graphene," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo Henck & Diego Mauro & Daniil Domaretskiy & Marc Philippi & Shahriar Memaran & Wenkai Zheng & Zhengguang Lu & Dmitry Shcherbakov & Chun Ning Lau & Dmitry Smirnov & Luis Balicas & Kenji Watanabe & , 2022. "Light sources with bias tunable spectrum based on van der Waals interface transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Roberto Rosati & Ioannis Paradisanos & Libai Huang & Ziyang Gan & Antony George & Kenji Watanabe & Takashi Taniguchi & Laurent Lombez & Pierre Renucci & Andrey Turchanin & Bernhard Urbaszek & Ermin Ma, 2023. "Interface engineering of charge-transfer excitons in 2D lateral heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Andrew Y. Joe & Andrés M. Mier Valdivia & Luis A. Jauregui & Kateryna Pistunova & Dapeng Ding & You Zhou & Giovanni Scuri & Kristiaan De Greve & Andrey Sushko & Bumho Kim & Takashi Taniguchi & Kenji W, 2024. "Controlled interlayer exciton ionization in an electrostatic trap in atomically thin heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Chengjian He & Chuan Xu & Chen Chen & Jinmeng Tong & Tianya Zhou & Su Sun & Zhibo Liu & Hui-Ming Cheng & Wencai Ren, 2024. "Unusually high thermal conductivity in suspended monolayer MoSi2N4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhiheng Huang & Yunfei Bai & Yanchong Zhao & Le Liu & Xuan Zhao & Jiangbin Wu & Kenji Watanabe & Takashi Taniguchi & Wei Yang & Dongxia Shi & Yang Xu & Tiantian Zhang & Qingming Zhang & Ping-Heng Tan , 2024. "Observation of phonon Stark effect," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Josef Schätz & Navin Nayi & Jonas Weber & Christoph Metzke & Sebastian Lukas & Jürgen Walter & Tim Schaffus & Fabian Streb & Eros Reato & Agata Piacentini & Annika Grundmann & Holger Kalisch & Michael, 2024. "Button shear testing for adhesion measurements of 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Fateme Mahdikhanysarvejahany & Daniel N. Shanks & Matthew Klein & Qian Wang & Michael R. Koehler & David G. Mandrus & Takashi Taniguchi & Kenji Watanabe & Oliver L. A. Monti & Brian J. LeRoy & John R., 2022. "Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. M. Wurdack & T. Yun & M. Katzer & A. G. Truscott & A. Knorr & M. Selig & E. A. Ostrovskaya & E. Estrecho, 2023. "Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Lihuan Sun & Louk Rademaker & Diego Mauro & Alessandro Scarfato & Árpád Pásztor & Ignacio Gutiérrez-Lezama & Zhe Wang & Jose Martinez-Castro & Alberto F. Morpurgo & Christoph Renner, 2023. "Determining spin-orbit coupling in graphene by quasiparticle interference imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Liting Liu & Yang Chen & Long Chen & Biao Xie & Guoli Li & Lingan Kong & Quanyang Tao & Zhiwei Li & Xiaokun Yang & Zheyi Lu & Likuan Ma & Donglin Lu & Xiangdong Yang & Yuan Liu, 2024. "Ultrashort vertical-channel MoS2 transistor using a self-aligned contact," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Abhijeet M. Kumar & Denis Yagodkin & Roberto Rosati & Douglas J. Bock & Christoph Schattauer & Sarah Tobisch & Joakim Hagel & Bianca Höfer & Jan N. Kirchhof & Pablo Hernández López & Kenneth Burfeindt, 2024. "Strain fingerprinting of exciton valley character in 2D semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Yang Luo & Fan-Fang Kong & Xiao-Jun Tian & Yun-Jie Yu & Shi-Hao Jing & Chao Zhang & Gong Chen & Yang Zhang & Yao Zhang & Xiao-Guang Li & Zhen-Yu Zhang & Zhen-Chao Dong, 2024. "Anomalously bright single-molecule upconversion electroluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Jinjae Kim & Jiwon Park & Hyojin Choi & Taeho Kim & Soonyoung Cha & Yewon Lee & Kenji Watanabe & Takashi Taniguchi & Jonghwan Kim & Moon-Ho Jo & Hyunyong Choi, 2024. "Correlation-driven nonequilibrium exciton site transition in a WSe2/WS2 moiré supercell," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. B. G. Márkus & M. Gmitra & B. Dóra & G. Csősz & T. Fehér & P. Szirmai & B. Náfrádi & V. Zólyomi & L. Forró & J. Fabian & F. Simon, 2023. "Ultralong 100 ns spin relaxation time in graphite at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40815-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.