IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51195-y.html
   My bibliography  Save this article

Strain fingerprinting of exciton valley character in 2D semiconductors

Author

Listed:
  • Abhijeet M. Kumar

    (Freie Universität Berlin)

  • Denis Yagodkin

    (Freie Universität Berlin)

  • Roberto Rosati

    (Philipps-Universität Marburg)

  • Douglas J. Bock

    (Freie Universität Berlin)

  • Christoph Schattauer

    (TU Wien)

  • Sarah Tobisch

    (TU Wien)

  • Joakim Hagel

    (Chalmers University of Technology)

  • Bianca Höfer

    (Freie Universität Berlin)

  • Jan N. Kirchhof

    (Freie Universität Berlin
    Delft University of Technology)

  • Pablo Hernández López

    (Humboldt-Universität Berlin)

  • Kenneth Burfeindt

    (Freie Universität Berlin)

  • Sebastian Heeg

    (Humboldt-Universität Berlin)

  • Cornelius Gahl

    (Freie Universität Berlin)

  • Florian Libisch

    (TU Wien)

  • Ermin Malic

    (Philipps-Universität Marburg)

  • Kirill I. Bolotin

    (Freie Universität Berlin)

Abstract

Intervalley excitons with electron and hole wavefunctions residing in different valleys determine the long-range transport and dynamics observed in many semiconductors. However, these excitons with vanishing oscillator strength do not directly couple to light and, hence, remain largely unstudied. Here, we develop a simple nanomechanical technique to control the energy hierarchy of valleys via their contrasting response to mechanical strain. We use our technique to discover previously inaccessible intervalley excitons associated with K, Γ, or Q valleys in prototypical 2D semiconductors WSe2 and WS2. We also demonstrate a new brightening mechanism, rendering an otherwise “dark” intervalley exciton visible via strain-controlled hybridization with an intravalley exciton. Moreover, we classify various localized excitons from their distinct strain response and achieve large tuning of their energy. Overall, our valley engineering approach establishes a new way to identify intervalley excitons and control their interactions in a diverse class of 2D systems.

Suggested Citation

  • Abhijeet M. Kumar & Denis Yagodkin & Roberto Rosati & Douglas J. Bock & Christoph Schattauer & Sarah Tobisch & Joakim Hagel & Bianca Höfer & Jan N. Kirchhof & Pablo Hernández López & Kenneth Burfeindt, 2024. "Strain fingerprinting of exciton valley character in 2D semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51195-y
    DOI: 10.1038/s41467-024-51195-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51195-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51195-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saroj B. Chand & John M. Woods & Jiamin Quan & Enrique Mejia & Takashi Taniguchi & Kenji Watanabe & Andrea Alù & Gabriele Grosso, 2023. "Interaction-driven transport of dark excitons in 2D semiconductors with phonon-mediated optical readout," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jessica Lindlau & Malte Selig & Andre Neumann & Léo Colombier & Jonathan Förste & Victor Funk & Michael Förg & Jonghwan Kim & Gunnar Berghäuser & Takashi Taniguchi & Kenji Watanabe & Feng Wang & Ermin, 2018. "The role of momentum-dark excitons in the elementary optical response of bilayer WSe2," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. Malte Selig & Gunnar Berghäuser & Archana Raja & Philipp Nagler & Christian Schüller & Tony F. Heinz & Tobias Korn & Alexey Chernikov & Ermin Malic & Andreas Knorr, 2016. "Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    4. Roberto Rosati & Robert Schmidt & Samuel Brem & Raül Perea-Causín & Iris Niehues & Johannes Kern & Johann A. Preuß & Robert Schneider & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ermin , 2021. "Dark exciton anti-funneling in atomically thin semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Rosati & Ioannis Paradisanos & Libai Huang & Ziyang Gan & Antony George & Kenji Watanabe & Takashi Taniguchi & Laurent Lombez & Pierre Renucci & Andrey Turchanin & Bernhard Urbaszek & Ermin Ma, 2023. "Interface engineering of charge-transfer excitons in 2D lateral heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. M. Wurdack & T. Yun & M. Katzer & A. G. Truscott & A. Knorr & M. Selig & E. A. Ostrovskaya & E. Estrecho, 2023. "Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Roberto Rosati & Robert Schmidt & Samuel Brem & Raül Perea-Causín & Iris Niehues & Johannes Kern & Johann A. Preuß & Robert Schneider & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ermin , 2021. "Dark exciton anti-funneling in atomically thin semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Luca Sortino & Panaiot G. Zotev & Catherine L. Phillips & Alistair J. Brash & Javier Cambiasso & Elena Marensi & A. Mark Fox & Stefan A. Maier & Riccardo Sapienza & Alexander I. Tartakovskii, 2021. "Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Simon Raiber & Paulo E. Faria Junior & Dennis Falter & Simon Feldl & Petter Marzena & Kenji Watanabe & Takashi Taniguchi & Jaroslav Fabian & Christian Schüller, 2022. "Ultrafast pseudospin quantum beats in multilayer WSe2 and MoSe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yihong Wang & Bin Zhou & Rong Zhao & Bubin Wang & Qi Liu & Minglu Dai, 2022. "Super-Accuracy Calculation for the Half Width of a Voigt Profile," Mathematics, MDPI, vol. 10(2), pages 1-14, January.
    9. Saroj B. Chand & John M. Woods & Jiamin Quan & Enrique Mejia & Takashi Taniguchi & Kenji Watanabe & Andrea Alù & Gabriele Grosso, 2023. "Interaction-driven transport of dark excitons in 2D semiconductors with phonon-mediated optical readout," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Rui Cai & Indrajit Wadgaonkar & Jia Wei Melvin Lim & Stefano Dal Forno & David Giovanni & Minjun Feng & Senyun Ye & Marco Battiato & Tze Chien Sum, 2023. "Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Riya Sebait & Roberto Rosati & Seok Joon Yun & Krishna P. Dhakal & Samuel Brem & Chandan Biswas & Alexander Puretzky & Ermin Malic & Young Hee Lee, 2023. "Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Haonan Wang & Heejun Kim & Duanfei Dong & Keisuke Shinokita & Kenji Watanabe & Takashi Taniguchi & Kazunari Matsuda, 2024. "Quantum coherence and interference of a single moiré exciton in nano-fabricated twisted monolayer semiconductor heterobilayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Ke Wei & Qirui Liu & Yuxiang Tang & Yingqian Ye & Zhongjie Xu & Tian Jiang, 2023. "Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51195-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.