Spin–orbit proximity effect in graphene
Author
Abstract
Suggested Citation
DOI: 10.1038/ncomms5875
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qing Rao & Wun-Hao Kang & Hongxia Xue & Ziqing Ye & Xuemeng Feng & Kenji Watanabe & Takashi Taniguchi & Ning Wang & Ming-Hao Liu & Dong-Keun Ki, 2023. "Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- B. G. Márkus & M. Gmitra & B. Dóra & G. Csősz & T. Fehér & P. Szirmai & B. Náfrádi & V. Zólyomi & L. Forró & J. Fabian & F. Simon, 2023. "Ultralong 100 ns spin relaxation time in graphite at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Nikhil Tilak & Michael Altvater & Sheng-Hsiung Hung & Choong-Jae Won & Guohong Li & Taha Kaleem & Sang-Wook Cheong & Chung-Hou Chung & Horng-Tay Jeng & Eva Y. Andrei, 2024. "Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Lihuan Sun & Louk Rademaker & Diego Mauro & Alessandro Scarfato & Árpád Pásztor & Ignacio Gutiérrez-Lezama & Zhe Wang & Jose Martinez-Castro & Alberto F. Morpurgo & Christoph Renner, 2023. "Determining spin-orbit coupling in graphene by quasiparticle interference imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Jinho Choi & Healin Im & Jung-Moo Heo & Do Wan Kim & Hanjie Jiang & Alexander Stark & Wenhao Shao & Paul M. Zimmerman & Gi Wan Jeon & Jae-Won Jang & Euy Heon Hwang & Sunkook Kim & Dong Hyuk Park & Jin, 2024. "Microsecond triplet emission from organic chromophore-transition metal dichalcogenide hybrids via through-space spin orbit proximity effect," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Michele Masseroni & Mario Gull & Archisman Panigrahi & Nils Jacobsen & Felix Fischer & Chuyao Tong & Jonas D. Gerber & Markus Niese & Takashi Taniguchi & Kenji Watanabe & Leonid Levitov & Thomas Ihn &, 2024. "Spin-orbit proximity in MoS2/bilayer graphene heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5875. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.