IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40131-1.html
   My bibliography  Save this article

Ordered creation and motion of skyrmions with surface acoustic wave

Author

Listed:
  • Ruyi Chen

    (Tsinghua University)

  • Chong Chen

    (Tsinghua University)

  • Lei Han

    (Tsinghua University)

  • Peisen Liu

    (Tsinghua University)

  • Rongxuan Su

    (Tsinghua University)

  • Wenxuan Zhu

    (Tsinghua University)

  • Yongjian Zhou

    (Tsinghua University)

  • Feng Pan

    (Tsinghua University)

  • Cheng Song

    (Tsinghua University)

Abstract

Magnetic skyrmions with a well-defined spin texture have shown unprecedented potential for various spintronic applications owning to their topologically non-trivial and quasiparticle properties. To put skyrmions into practical technology, efficient manipulation, especially the inhibition of skyrmion Hall effect (SkHE) has been intensively pursued. In spite of the recent progress made on reducing SkHE in several substituted systems, such as ferrimagnets and synthetic antiferromagnets, the organized creation and current driven motion of skyrmions with negligible SkHE in ferromagnets remain challenging. Here, by embedding the [Co/Pd] multilayer into a surface acoustic wave (SAW) delay line where the longitudinal leaky SAW is excited to provide both the strain and thermal effect, we experimentally realized the ordered generation of magnetic skyrmions. The resultant current-induced skyrmions movement with negligible SkHE was observed, which can be attributed to the energy redistribution of the system during the excitation of SAW. Our findings open up an unprecedentedly new perspective for manipulating topological solitons, which could possibly trigger the future discoveries in skyrmionics and spin acousto-electronics.

Suggested Citation

  • Ruyi Chen & Chong Chen & Lei Han & Peisen Liu & Rongxuan Su & Wenxuan Zhu & Yongjian Zhou & Feng Pan & Cheng Song, 2023. "Ordered creation and motion of skyrmions with surface acoustic wave," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40131-1
    DOI: 10.1038/s41467-023-40131-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40131-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40131-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Foerster & Ferran Macià & Nahuel Statuto & Simone Finizio & Alberto Hernández-Mínguez & Sergi Lendínez & Paulo V. Santos & Josep Fontcuberta & Joan Manel Hernàndez & Mathias Kläui & Lucia Abal, 2017. "Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. Seonghoon Woo & Kyung Mee Song & Xichao Zhang & Yan Zhou & Motohiko Ezawa & Xiaoxi Liu & S. Finizio & J. Raabe & Nyun Jong Lee & Sang-Il Kim & Seung-Young Park & Younghak Kim & Jae-Young Kim & Dongjoo, 2018. "Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Takaaki Dohi & Samik DuttaGupta & Shunsuke Fukami & Hideo Ohno, 2019. "Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    4. Shawn D. Pollard & Joseph A. Garlow & Jiawei Yu & Zhen Wang & Yimei Zhu & Hyunsoo Yang, 2017. "Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roméo Juge & Naveen Sisodia & Joseba Urrestarazu Larrañaga & Qiang Zhang & Van Tuong Pham & Kumari Gaurav Rana & Brice Sarpi & Nicolas Mille & Stefan Stanescu & Rachid Belkhou & Mohamad-Assaad Mawass , 2022. "Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Sougata Mallick & Yanis Sassi & Nicholas Figueiredo Prestes & Sachin Krishnia & Fernando Gallego & Luis M. Vicente Arche & Thibaud Denneulin & Sophie Collin & Karim Bouzehouane & André Thiaville & Raf, 2024. "Driving skyrmions in flow regime in synthetic ferrimagnets," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Dongsheng Song & Weiwei Wang & Shuisen Zhang & Yizhou Liu & Ning Wang & Fengshan Zheng & Mingliang Tian & Rafal E. Dunin-Borkowski & Jiadong Zang & Haifeng Du, 2024. "Steady motion of 80-nm-size skyrmions in a 100-nm-wide track," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    7. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    8. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Sergey Zayko & Ofer Kfir & Michael Heigl & Michael Lohmann & Murat Sivis & Manfred Albrecht & Claus Ropers, 2021. "Ultrafast high-harmonic nanoscopy of magnetization dynamics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Ji-Ho Park & Won Tae Kim & Woonjae Won & Jun-Ho Kang & Soogil Lee & Byong-Guk Park & Byoung S. Ham & Younghun Jo & Fabian Rotermund & Kab-Jin Kim, 2022. "Observation of spin-glass-like characteristics in ferrimagnetic TbCo through energy-level-selective approach," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40131-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.