IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40344-4.html
   My bibliography  Save this article

Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing

Author

Listed:
  • Sandra Wimberger

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca
    University of Gothenburg)

  • Nina Akrap

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Mike Firth

    (Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Johan Brengdahl

    (Cell Assay Development, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Susanna Engberg

    (Cell Engineering Sweden, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Marie K. Schwinn

    (Promega Corporation)

  • Michael R. Slater

    (Promega Corporation)

  • Anders Lundin

    (Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Pei-Pei Hsieh

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Songyuan Li

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Silvia Cerboni

    (Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca)

  • Jonathan Sumner

    (Cell Immunology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Burcu Bestas

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Bastian Schiffthaler

    (Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Björn Magnusson

    (Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Silvio Di Castro

    (Compound Synthesis & Management, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Preeti Iyer

    (Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Mohammad Bohlooly-Y

    (Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Thomas Machleidt

    (Promega Corporation)

  • Steve Rees

    (Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Ola Engkvist

    (Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Tyrell Norris

    (Cell Engineering Sweden, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Elaine B. Cadogan

    (Bioscience, Early Oncology, AstraZeneca)

  • Josep V. Forment

    (Bioscience, Early Oncology, AstraZeneca)

  • Saša Šviković

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Pinar Akcakaya

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Amir Taheri-Ghahfarokhi

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

  • Marcello Maresca

    (Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca)

Abstract

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (Polϴ). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.

Suggested Citation

  • Sandra Wimberger & Nina Akrap & Mike Firth & Johan Brengdahl & Susanna Engberg & Marie K. Schwinn & Michael R. Slater & Anders Lundin & Pei-Pei Hsieh & Songyuan Li & Silvia Cerboni & Jonathan Sumner &, 2023. "Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40344-4
    DOI: 10.1038/s41467-023-40344-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40344-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40344-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deniz Simsek & Amy Furda & Yankun Gao & Jérôme Artus & Erika Brunet & Anna-Katerina Hadjantonakis & Bennett Van Houten & Stewart Shuman & Peter J. McKinnon & Maria Jasin, 2011. "Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair," Nature, Nature, vol. 471(7337), pages 245-248, March.
    2. Daniel P. Dever & Rasmus O. Bak & Andreas Reinisch & Joab Camarena & Gabriel Washington & Carmencita E. Nicolas & Mara Pavel-Dinu & Nivi Saxena & Alec B. Wilkens & Sruthi Mantri & Nobuko Uchida & Ayal, 2016. "CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells," Nature, Nature, vol. 539(7629), pages 384-389, November.
    3. Stephan Riesenberg & Tomislav Maricic, 2018. "Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Heysol C. Bermudez-Cabrera & Sannie Culbertson & Sammy Barkal & Benjamin Holmes & Max W. Shen & Sophia Zhang & David K. Gifford & Richard I. Sherwood, 2021. "Small molecule inhibition of ATM kinase increases CRISPR-Cas9 1-bp insertion frequency," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    7. Max W. Shen & Mandana Arbab & Jonathan Y. Hsu & Daniel Worstell & Sannie J. Culbertson & Olga Krabbe & Christopher A. Cassa & David R. Liu & David K. Gifford & Richard I. Sherwood, 2018. "Predictable and precise template-free CRISPR editing of pathogenic variants," Nature, Nature, vol. 563(7733), pages 646-651, November.
    8. Pedro A. Mateos-Gomez & Fade Gong & Nidhi Nair & Kyle M. Miller & Eros Lazzerini-Denchi & Agnel Sfeir, 2015. "Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination," Nature, Nature, vol. 518(7538), pages 254-257, February.
    9. Ragini Bhargava & Manbir Sandhu & Sanychen Muk & Gabriella Lee & Nagarajan Vaidehi & Jeremy M. Stark, 2018. "C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    10. Fuqiang Chen & Xiao Ding & Yongmei Feng & Timothy Seebeck & Yanfang Jiang & Gregory D. Davis, 2017. "Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    11. Songyuan Li & Nina Akrap & Silvia Cerboni & Michelle J. Porritt & Sandra Wimberger & Anders Lundin & Carl Möller & Mike Firth & Euan Gordon & Bojana Lazovic & Aleksandra Sieńska & Luna Simona Pane & M, 2021. "Universal toxin-based selection for precise genome engineering in human cells," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arianna Moiani & Gil Letort & Sabrina Lizot & Anne Chalumeau & Chloe Foray & Tristan Felix & Diane Clerre & Sonal Temburni-Blake & Patrick Hong & Sophie Leduc & Noemie Pinard & Alan Marechal & Eduardo, 2024. "Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Juan A. Perez-Bermejo & Oghene Efagene & William M. Matern & Jeffrey K. Holden & Shaheen Kabir & Glen M. Chew & Gaia Andreoletti & Eniola Catton & Craig L. Ennis & Angelica Garcia & Trevor L. Gerstenb, 2024. "Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Juan A. Perez-Bermejo & Oghene Efagene & William M. Matern & Jeffrey K. Holden & Shaheen Kabir & Glen M. Chew & Gaia Andreoletti & Eniola Catton & Craig L. Ennis & Angelica Garcia & Trevor L. Gerstenb, 2024. "Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Zhiqian Li & Lang You & Anita Hermann & Ethan Bier, 2024. "Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Trevor Weiss & Jitesh Kumar & Chuan Chen & Shengsong Guo & Oliver Schlegel & John Lutterman & Kun Ling & Feng Zhang, 2024. "Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    7. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Aldo S. Bader & Martin Bushell, 2023. "iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Bert van de Kooij & Alex Kruswick & Haico van Attikum & Michael B. Yaffe, 2022. "Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Xabier Vergara & Anna G. Manjón & Marcel Haas & Ben Morris & Ruben Schep & Christ Leemans & Anoek Friskes & Roderick L. Beijersbergen & Mathijs A. Sanders & René H. Medema & Bas Steensel, 2024. "Widespread chromatin context-dependencies of DNA double-strand break repair proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Jun Huang & David Rowe & Pratima Subedi & Wei Zhang & Tyler Suelter & Barbara Valent & David E. Cook, 2022. "CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Lukas Möller & Eric J. Aird & Markus S. Schröder & Lena Kobel & Lucas Kissling & Lilly van de Venn & Jacob E. Corn, 2022. "Recursive Editing improves homology-directed repair through retargeting of undesired outcomes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Kasparas Petkevicius & Henrik Palmgren & Matthew S. Glover & Andrea Ahnmark & Anne-Christine Andréasson & Katja Madeyski-Bengtson & Hiroki Kawana & Erik L. Allman & Delaney Kaper & Martin Uhrbom & Lis, 2022. "TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Megan E. Luedeman & Susanna Stroik & Wanjuan Feng & Adam J. Luthman & Gaorav P. Gupta & Dale A. Ramsden, 2022. "Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. G. Cullot & J. Boutin & S. Fayet & F. Prat & J. Rosier & D. Cappellen & I. Lamrissi & P. Pennamen & J. Bouron & S. Amintas & C. Thibault & I. Moranvillier & E. Laharanne & J. P. Merlio & V. Guyonnet-D, 2023. "Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40344-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.