IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34898-y.html
   My bibliography  Save this article

Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response

Author

Listed:
  • Xiangjun He

    (The Chinese University of Hong Kong)

  • Zhenjie Zhang

    (The Chinese University of Hong Kong)

  • Junyi Xue

    (The Chinese University of Hong Kong)

  • Yaofeng Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Siqi Zhang

    (The Chinese University of Hong Kong)

  • Junkang Wei

    (The Chinese University of Hong Kong)

  • Chenzi Zhang

    (The Chinese University of Hong Kong
    Chinese Academy of Sciences)

  • Jue Wang

    (The Chinese University of Hong Kong)

  • Brian Anugerah Urip

    (The Chinese University of Hong Kong)

  • Chun Christopher Ngan

    (The Chinese University of Hong Kong
    Chinese Academy of Sciences)

  • Junjiang Sun

    (University of North Carolina)

  • Yuefeng Li

    (Guangdong Landau Biotechnology Co.Ltd)

  • Zhiqian Lu

    (Shanghai Jiao Tong University Affiliated Sixth People’s Hospital)

  • Hui Zhao

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong, Shenzhen Research Institute)

  • Duanqing Pei

    (Chinese Academy of Sciences
    Westlake University)

  • Chi-Kong Li

    (The Chinese University of Hong Kong)

  • Bo Feng

    (The Chinese University of Hong Kong
    Chinese Academy of Sciences
    The Chinese University of Hong Kong, Shenzhen Research Institute)

Abstract

AAV-delivered CRISPR/Cas9 (AAV-CRISPR) has shown promising potentials in preclinical models to efficiently insert therapeutic gene sequences in somatic tissues. However, the AAV input doses required were prohibitively high and posed serious risk of toxicity. Here, we performed AAV-CRISPR mediated homology-independent knock-in at a new target site in mAlb 3’UTR and demonstrated that single dose of AAVs enabled long-term integration and expression of hF9 transgene in both adult and neonatal hemophilia B mice (mF9 −/−), yielding high levels of circulating human Factor IX (hFIX) and stable hemostasis restoration during entire 48-week observation period. Furthermore, we achieved hemostasis correction with a significantly lower AAV dose (2 × 109 vg/neonate and 1 × 1010 vg/adult mouse) through liver-specific gene knock-in using hyperactive hF9R338L variant. The plasma antibodies against Cas9 and AAV in the neonatal mice receiving low-dose AAV-CRISPR were negligible, which lent support to the development of AAV-CRISPR mediated somatic knock-in for treating inherited diseases.

Suggested Citation

  • Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34898-y
    DOI: 10.1038/s41467-022-34898-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34898-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34898-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    2. F. Ann Ran & Le Cong & Winston X. Yan & David A. Scott & Jonathan S. Gootenberg & Andrea J. Kriz & Bernd Zetsche & Ophir Shalem & Xuebing Wu & Kira S. Makarova & Eugene V. Koonin & Phillip A. Sharp & , 2015. "In vivo genome editing using Staphylococcus aureus Cas9," Nature, Nature, vol. 520(7546), pages 186-191, April.
    3. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Killian S. Hanlon & Benjamin P. Kleinstiver & Sara P. Garcia & Mikołaj P. Zaborowski & Adrienn Volak & Stefan E. Spirig & Alissa Muller & Alexander A. Sousa & Shengdar Q. Tsai & Niclas E. Bengtsson & , 2019. "High levels of AAV vector integration into CRISPR-induced DNA breaks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Hojun Li & Virginia Haurigot & Yannick Doyon & Tianjian Li & Sunnie Y. Wong & Anand S. Bhagwat & Nirav Malani & Xavier M. Anguela & Rajiv Sharma & Lacramiora Ivanciu & Samuel L. Murphy & Jonathan D. F, 2011. "In vivo genome editing restores haemostasis in a mouse model of haemophilia," Nature, Nature, vol. 475(7355), pages 217-221, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Patrizia Tornabene & Rita Ferla & Manel Llado-Santaeularia & Miriam Centrulo & Margherita Dell’Anno & Federica Esposito & Elena Marrocco & Emanuela Pone & Renato Minopoli & Carolina Iodice & Edoardo N, 2022. "Therapeutic homology-independent targeted integration in retina and liver," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Xiang Meng & Ruixuan Jia & Xinping Zhao & Fan Zhang & Shaohong Chen & Shicheng Yu & Xiaozhen Liu & Hongliang Dou & Xuefeng Feng & Jinlu Zhang & Ni Wang & Boling Xu & Liping Yang, 2024. "In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Jun Huang & David Rowe & Pratima Subedi & Wei Zhang & Tyler Suelter & Barbara Valent & David E. Cook, 2022. "CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Milan Gautam & Antony Jozic & Grace Li-Na Su & Marco Herrera-Barrera & Allison Curtis & Sebastian Arrizabalaga & Wayne Tschetter & Renee C. Ryals & Gaurav Sahay, 2023. "Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Boris Kantor & Bernadette O’Donovan & Joseph Rittiner & Dellila Hodgson & Nicholas Lindner & Sophia Guerrero & Wendy Dong & Austin Zhang & Ornit Chiba-Falek, 2024. "The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Ron Baik & M. Kyle Cromer & Steve E. Glenn & Christopher A. Vakulskas & Kay O. Chmielewski & Amanda M. Dudek & William N. Feist & Julia Klermund & Suzette Shipp & Toni Cathomen & Daniel P. Dever & Mat, 2024. "Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Fumiyuki Hatanaka & Keiichiro Suzuki & Kensaku Shojima & Jingting Yu & Yuta Takahashi & Akihisa Sakamoto & Javier Prieto & Maxim Shokhirev & Estrella Nuñez Delicado & Concepcion Rodriguez Esteban & Ju, 2024. "Therapeutic strategy for spinal muscular atrophy by combining gene supplementation and genome editing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Zhepu Ruan & Kai Chen & Weimiao Cao & Lei Meng & Bingang Yang & Mengjun Xu & Youwen Xing & Pengfa Li & Shiri Freilich & Chen Chen & Yanzheng Gao & Jiandong Jiang & Xihui Xu, 2024. "Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Yanbo Wang & W. Taylor Cottle & Haobo Wang & Momcilo Gavrilov & Roger S. Zou & Minh-Tam Pham & Srinivasan Yegnasubramanian & Scott Bailey & Taekjip Ha, 2022. "Achieving single nucleotide sensitivity in direct hybridization genome imaging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34898-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.