IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55522-1.html
   My bibliography  Save this article

Rational engineering of minimally immunogenic nucleases for gene therapy

Author

Listed:
  • Rumya Raghavan

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Mirco J. Friedrich

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Indigo King

    (Cyrus Biotechnology)

  • Samuel Chau-Duy-Tam Vo

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Daniel Strebinger

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Blake Lash

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Michael Kilian

    (DKFZ)

  • Michael Platten

    (DKFZ)

  • Rhiannon K. Macrae

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Yifan Song

    (Cyrus Biotechnology)

  • Lucas Nivon

    (Cyrus Biotechnology)

  • Feng Zhang

    (Broad Institute of MIT and Harvard
    McGovern Institute for Brain Research at MIT
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Genome editing using CRISPR-Cas systems is a promising avenue for the treatment of genetic diseases. However, cellular and humoral immunogenicity of genome editing tools, which originate from bacteria, complicates their clinical use. Here we report reduced immunogenicity (Red)(i)-variants of two clinically relevant nucleases, SaCas9 and AsCas12a. Through MHC-associated peptide proteomics (MAPPs) analysis, we identify putative immunogenic epitopes on each nuclease. Using computational modeling, we rationally design these proteins to evade the immune response. SaCas9 and AsCas12a Redi variants are substantially less recognized by adaptive immune components, including reduced binding affinity to MHC molecules and attenuated generation of cytotoxic T cell responses, yet maintain wild-type levels of activity and specificity. In vivo editing of PCSK9 with SaCas9.Redi.1 is comparable in efficiency to wild-type SaCas9, but significantly reduces undesired immune responses. This demonstrates the utility of this approach in engineering proteins to evade immune detection.

Suggested Citation

  • Rumya Raghavan & Mirco J. Friedrich & Indigo King & Samuel Chau-Duy-Tam Vo & Daniel Strebinger & Blake Lash & Michael Kilian & Michael Platten & Rhiannon K. Macrae & Yifan Song & Lucas Nivon & Feng Zh, 2025. "Rational engineering of minimally immunogenic nucleases for gene therapy," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55522-1
    DOI: 10.1038/s41467-024-55522-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55522-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55522-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julie M. Crudele & Jeffrey S. Chamberlain, 2018. "Cas9 immunity creates challenges for CRISPR gene editing therapies," Nature Communications, Nature, vol. 9(1), pages 1-3, December.
    2. Vijaya L. Simhadri & Louis Hopkins & Joseph R. McGill & Brian R. Duke & Swati Mukherjee & Kate Zhang & Zuben E. Sauna, 2021. "Cas9-derived peptides presented by MHC Class II that elicit proliferation of CD4+ T-cells," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    4. F. Ann Ran & Le Cong & Winston X. Yan & David A. Scott & Jonathan S. Gootenberg & Andrea J. Kriz & Bernd Zetsche & Ophir Shalem & Xuebing Wu & Kira S. Makarova & Eugene V. Koonin & Phillip A. Sharp & , 2015. "In vivo genome editing using Staphylococcus aureus Cas9," Nature, Nature, vol. 520(7546), pages 186-191, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Qiao Liu & Di He & Lei Xie, 2019. "Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-22, October.
    4. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Jun Huang & David Rowe & Pratima Subedi & Wei Zhang & Tyler Suelter & Barbara Valent & David E. Cook, 2022. "CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Myung Chung & Katsutoshi Imanaka & Ziyan Huang & Akiyuki Watarai & Mu-Yun Wang & Kentaro Tao & Hirotaka Ejima & Tomomi Aida & Guoping Feng & Teruhiro Okuyama, 2024. "Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Boris Kantor & Bernadette O’Donovan & Joseph Rittiner & Dellila Hodgson & Nicholas Lindner & Sophia Guerrero & Wendy Dong & Austin Zhang & Ornit Chiba-Falek, 2024. "The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Dean J. Kareemo & Christina S. Winborn & Samantha S. Olah & Carley N. Miller & JungMin Kim & Chelsie A. Kadgien & Hannah S. Actor-Engel & Harrison J. Ramsay & Austin M. Ramsey & Jason Aoto & Matthew J, 2024. "Genetically encoded intrabody probes for labeling and manipulating AMPA-type glutamate receptors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Akiko Tomita & Hiroyuki Sasanuma & Tomoo Owa & Yuka Nakazawa & Mayuko Shimada & Takahiro Fukuoka & Tomoo Ogi & Shinichiro Nakada, 2023. "Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Ang Li & Hitoshi Mitsunobu & Shin Yoshioka & Takahisa Suzuki & Akihiko Kondo & Keiji Nishida, 2022. "Cytosine base editing systems with minimized off-target effect and molecular size," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Longliang Qiao & Lingxue Niu & Meiyan Wang & Zhihao Wang & Deqiang Kong & Guiling Yu & Haifeng Ye, 2024. "A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Qichen Yuan & Hongzhi Zeng & Tyler C. Daniel & Qingzhuo Liu & Yongjie Yang & Emmanuel C. Osikpa & Qiaochu Yang & Advaith Peddi & Liliana M. Abramson & Boyang Zhang & Yong Xu & Xue Gao, 2024. "Orthogonal and multiplexable genetic perturbations with an engineered prime editor and a diverse RNA array," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Yuki Ogawa & Brian C. Lim & Shanu George & Juan A. Oses-Prieto & Joshua M. Rasband & Yael Eshed-Eisenbach & Hamdan Hamdan & Supna Nair & Francesco Boato & Elior Peles & Alma L. Burlingame & Linda Aels, 2023. "Antibody-directed extracellular proximity biotinylation reveals that Contactin-1 regulates axo-axonic innervation of axon initial segments," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55522-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.