IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v518y2015i7538d10.1038_nature14157.html
   My bibliography  Save this article

Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination

Author

Listed:
  • Pedro A. Mateos-Gomez

    (Skirball Institute of Biomolecular Medicine, NYU School of Medicine)

  • Fade Gong

    (Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000)

  • Nidhi Nair

    (The Scripps Research Institute)

  • Kyle M. Miller

    (Institute for Cellular and Molecular Biology, University of Texas at Austin. 2506 Speedway Stop A5000)

  • Eros Lazzerini-Denchi

    (The Scripps Research Institute)

  • Agnel Sfeir

    (Skirball Institute of Biomolecular Medicine, NYU School of Medicine)

Abstract

Next-generation sequencing technology is used to show that the error-prone polymerase θ (Polθ) is needed to promote alternative non-homologous end joining at telomeres, and during chromosomal translocations, while counteracting homologous recombination; inhibition of Polθ represents a potential therapeutic strategy for tumours that have mutations in homology-directed repair genes.

Suggested Citation

  • Pedro A. Mateos-Gomez & Fade Gong & Nidhi Nair & Kyle M. Miller & Eros Lazzerini-Denchi & Agnel Sfeir, 2015. "Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination," Nature, Nature, vol. 518(7538), pages 254-257, February.
  • Handle: RePEc:nat:nature:v:518:y:2015:i:7538:d:10.1038_nature14157
    DOI: 10.1038/nature14157
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14157
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Wimberger & Nina Akrap & Mike Firth & Johan Brengdahl & Susanna Engberg & Marie K. Schwinn & Michael R. Slater & Anders Lundin & Pei-Pei Hsieh & Songyuan Li & Silvia Cerboni & Jonathan Sumner &, 2023. "Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Francesc Muyas & Manuel José Gómez Rodriguez & Rita Cascão & Angela Afonso & Carolin M. Sauer & Claudia C. Faria & Isidro Cortés-Ciriano & Ignacio Flores, 2024. "The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Juan A. Perez-Bermejo & Oghene Efagene & William M. Matern & Jeffrey K. Holden & Shaheen Kabir & Glen M. Chew & Gaia Andreoletti & Eniola Catton & Craig L. Ennis & Angelica Garcia & Trevor L. Gerstenb, 2024. "Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Jeffrey Patterson-Fortin & Heta Jadhav & Constantia Pantelidou & Tin Phan & Carter Grochala & Anita K. Mehta & Jennifer L. Guerriero & Gerburg M. Wulf & Brian M. Wolpin & Ben Z. Stanger & Andrew J. Ag, 2023. "RETRACTED ARTICLE: Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. John J. Krais & David J. Glass & Ilse Chudoba & Yifan Wang & Wanjuan Feng & Dennis Simpson & Pooja Patel & Zemin Liu & Ryan Neumann-Domer & Robert G. Betsch & Andrea J. Bernhardy & Alice M. Bradbury &, 2023. "Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Zhiqian Li & Lang You & Anita Hermann & Ethan Bier, 2024. "Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Megan E. Luedeman & Susanna Stroik & Wanjuan Feng & Adam J. Luthman & Gaorav P. Gupta & Dale A. Ramsden, 2022. "Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:518:y:2015:i:7538:d:10.1038_nature14157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.