IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005942.html
   My bibliography  Save this article

Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem

Author

Listed:
  • Yang, Kuang
  • Liao, Haifan
  • Xu, Bo
  • Chen, Qiuxiang
  • Hou, Zhenghui
  • Wang, Haijun

Abstract

A dimensionally consistent physics-informed neural network, named DimNet, has been developed to predict dryout quality in helical coils. Central to its design is the automated and optimizable dimensionality reduction technique, leveraging the Buckingham Pi theorem, which transforms 11 dimensional physical quantities into 8 dimensionless groups. Rigorous 5-fold cross-validation and cross-fluid testing affirm its performance, with an mean absolute error of 0.0540 and 0.198, respectively. The strategic incorporation of noise during training elucidates pronounced improvements, accentuating the model's adaptability. In comparison to three other neural network architectures, DimNet consistently displays superior accuracy. Ablation experiments have underscored the efficacy of each module within the model's design. Ultimately, while DimNet presents as a promising tool for enhancing thermal efficiency in helical-coiled steam generators, its design principles also shed light on the broader potential and versatility of dimensionally consistent neural architectures.

Suggested Citation

  • Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005942
    DOI: 10.1016/j.energy.2024.130822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    2. Lin, Meng & Li, Jiangkuan & Li, Yankai & Wang, Xu & Jin, Chengyi & Chen, Junjie, 2023. "Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels," Energy, Elsevier, vol. 282(C).
    3. Sun, Jinxiang & Zhang, Ruibo & Wang, Mingjun & Zhang, Jing & Qiu, Suizheng & Tian, Wenxi & Su, G.H., 2022. "Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method," Energy, Elsevier, vol. 259(C).
    4. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    5. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    6. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    7. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    8. Hassan, Syed Tauseef & Batool, Bushra & Wang, Ping & Zhu, Bangzhu & Sadiq, Muhammad, 2023. "Impact of economic complexity index, globalization, and nuclear energy consumption on ecological footprint: First insights in OECD context," Energy, Elsevier, vol. 263(PA).
    9. Xiaoyu Xie & Arash Samaei & Jiachen Guo & Wing Kam Liu & Zhengtao Gan, 2022. "Data-driven discovery of dimensionless numbers and governing laws from scarce measurements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    2. Lin, Meng & Li, Jiangkuan & Li, Yankai & Wang, Xu & Jin, Chengyi & Chen, Junjie, 2023. "Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels," Energy, Elsevier, vol. 282(C).
    3. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    4. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    5. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    6. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    7. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    8. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    9. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    10. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    11. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.
    12. Brantley Liddle, 2024. "To What Extent Do Alternative Energy Sources Displace Coal and Oil in Electricity Generation? A Mean-Group Panel Analysis," Sustainability, MDPI, vol. 16(13), pages 1-11, June.
    13. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    14. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    15. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    16. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    17. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    19. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.