IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26434-1.html
   My bibliography  Save this article

Physics-informed learning of governing equations from scarce data

Author

Listed:
  • Zhao Chen

    (Northeastern University)

  • Yang Liu

    (Northeastern University)

  • Hao Sun

    (Renmin University of China
    Beijing Key Laboratory of Big Data Management and Analysis Methods
    MIT)

Abstract

Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. This work introduces a novel approach called physics-informed neural network with sparse regression to discover governing partial differential equations from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this discovery approach seamlessly integrates the strengths of deep neural networks for rich representation learning, physics embedding, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the equations. The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of partial differential equation systems with different levels of data scarcity and noise accounting for different initial/boundary conditions. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.

Suggested Citation

  • Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26434-1
    DOI: 10.1038/s41467-021-26434-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26434-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26434-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ye Yuan & Xiuchuan Tang & Wei Zhou & Wei Pan & Xiuting Li & Hai-Tao Zhang & Han Ding & Jorge Goncalves, 2019. "Data driven discovery of cyber physical systems," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Bethany Lusch & J. Nathan Kutz & Steven L. Brunton, 2018. "Deep learning for universal linear embeddings of nonlinear dynamics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    4. Bryan C. Daniels & Ilya Nemenman, 2015. "Automated adaptive inference of phenomenological dynamical models," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    5. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
    5. Zhang, Wenbo & Gu, Wei, 2024. "Machine learning for a class of partial differential equations with multi-delays based on numerical Gaussian processes," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    6. Fernández de la Mata, Félix & Gijón, Alfonso & Molina-Solana, Miguel & Gómez-Romero, Juan, 2023. "Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Xiaoyu Xie & Arash Samaei & Jiachen Guo & Wing Kam Liu & Zhengtao Gan, 2022. "Data-driven discovery of dimensionless numbers and governing laws from scarce measurements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Zhang, Xiaoxia & Guan, Junsheng & Liu, Yanjun & Wang, Guoyin, 2024. "MORL4PDEs: Data-driven discovery of PDEs based on multi-objective optimization and reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Jiang, Yan & Yang, Wuyue & Zhu, Yi & Hong, Liu, 2023. "Entropy structure informed learning for solving inverse problems of differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yixin & Hu, Xianliang, 2022. "Artificial neural network approximations of Cauchy inverse problem for linear PDEs," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    4. Kalmykov, N.I. & Zagidullin, R. & Rogov, O.Y. & Rykovanov, S. & Dylov, D.V., 2024. "Suppressing modulation instability with reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Elena-Corina Cipu, 2019. "Duality Results in Quasiinvex Variational Control Problems with Curvilinear Integral Functionals," Mathematics, MDPI, vol. 7(9), pages 1-9, September.
    6. Hanno Gottschalk & Marco Reese, 2021. "An Analytical Study in Multi-physics and Multi-criteria Shape Optimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 486-512, May.
    7. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    8. Karel Van Bockstal, 2020. "Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order)," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    9. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    10. Savin Treanţă, 2019. "On Locally and Globally Optimal Solutions in Scalar Variational Control Problems," Mathematics, MDPI, vol. 7(9), pages 1-8, September.
    11. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    13. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    14. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    15. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    16. Ivan Francisco Yupanqui Tello & Alain Vande Wouwer & Daniel Coutinho, 2021. "A Concise Review of State Estimation Techniques for Partial Differential Equation Systems," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
    17. Christian Klein & Julien Riton & Nikola Stoilov, 2021. "Multi-domain spectral approach for the Hilbert transform on the real line," Partial Differential Equations and Applications, Springer, vol. 2(3), pages 1-19, June.
    18. Marco Cirant & Roberto Gianni & Paola Mannucci, 2020. "Short-Time Existence for a General Backward–Forward Parabolic System Arising from Mean-Field Games," Dynamic Games and Applications, Springer, vol. 10(1), pages 100-119, March.
    19. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    20. Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26434-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.