IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39289-5.html
   My bibliography  Save this article

Tesla valves and capillary structures-activated thermal regulator

Author

Listed:
  • Wenming Li

    (Southeast University)

  • Siyan Yang

    (Hong Kong Polytechnic University
    City University of Hong Kong)

  • Yongping Chen

    (Southeast University
    Suzhou University of Science and Technology)

  • Chen Li

    (University of South Carolina)

  • Zuankai Wang

    (Hong Kong Polytechnic University)

Abstract

Two-phase (liquid, vapor) flow in confined spaces is fundamentally interesting and practically important in many practical applications such as thermal management, offering the potential to impart high thermal transport performance owing to high surface-to-volume ratio and latent heat released during liquid/vapor phase transition. However, the associated physical size effect, in coupling with the striking contrast in specific volume between liquid and vapor phases, also leads to the onset of unwanted vapor backflow and chaotic two-phase flow patterns, which seriously deteriorates the practical thermal transport performances. Here, we develop a thermal regulator consisting of classical Tesla valves and engineered capillary structures, which can switch its working states and boost its heat transfer coefficient and critical heat flux in its “switched-on” state. We demonstrate that the Tesla valves and the capillary structures serve to eliminate vapor backflow and promote liquid flow along the sidewalls of both Tesla valves and main channels, respectively, which synergistically enable the thermal regulator to self-adapt to varying working conditions by rectifying the chaotic two-phase flow into an ordered and directional flow. We envision that revisiting century-old design can promote the development of next generation cooling devices towards switchable and very high heat transfer performances for power electronic devices.

Suggested Citation

  • Wenming Li & Siyan Yang & Yongping Chen & Chen Li & Zuankai Wang, 2023. "Tesla valves and capillary structures-activated thermal regulator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39289-5
    DOI: 10.1038/s41467-023-39289-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39289-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39289-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyoo-Chul Park & Philseok Kim & Alison Grinthal & Neil He & David Fox & James C. Weaver & Joanna Aizenberg, 2016. "Condensation on slippery asymmetric bumps," Nature, Nature, vol. 531(7592), pages 78-82, March.
    2. Navdeep Singh Dhillon & Jacopo Buongiorno & Kripa K. Varanasi, 2015. "Critical heat flux maxima during boiling crisis on textured surfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    3. H. Jeremy Cho & Jordan P. Mizerak & Evelyn N. Wang, 2015. "Turning bubbles on and off during boiling using charged surfactants," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Hak Rae Cho & Su Cheong Park & Doyeon Kim & Hyeong-min Joo & Dong In Yu, 2021. "Experimental Study on Pool Boiling on Hydrophilic Micro/Nanotextured Surfaces with Hydrophobic Patterns," Energies, MDPI, vol. 14(22), pages 1-13, November.
    3. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    4. Mohd Danish & Mohammed K. Al Mesfer & Khursheed B. Ansari & Mudassir Hasan & Abdelfattah Amari & Babar Azeem, 2021. "Predicting Conduction Heat Flux through Macrolayer in Nucleate Pool Boiling," Energies, MDPI, vol. 14(13), pages 1-13, June.
    5. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    6. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Guoying Bai & Haiyan Zhang & Dong Gao & Houguo Fei & Cunlan Guo & Mingxia Ren & Yufeng Liu, 2024. "Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Yalong Kong & Zhigang Liu & Lin Guo & Yu Qiu, 2022. "The Self-Actuating Droplet That Can Turn: A Molecular Dynamics Simulation," Energies, MDPI, vol. 15(22), pages 1-16, November.
    11. Xu, Nian & Yu, Xinyu & Liu, Zilong & Zhang, Tianxu & Chu, Huaqiang, 2024. "Effects of chloride ion concentration on porous surfaces and boiling heat transfer performance of porous surfaces," Energy, Elsevier, vol. 294(C).
    12. Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
    13. Limiao Zhang & Chi Wang & Guanyu Su & Artyom Kossolapov & Gustavo Matana Aguiar & Jee Hyun Seong & Florian Chavagnat & Bren Phillips & Md Mahamudur Rahman & Matteo Bucci, 2023. "A unifying criterion of the boiling crisis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39289-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.