IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v531y2016i7592d10.1038_nature16956.html
   My bibliography  Save this article

Condensation on slippery asymmetric bumps

Author

Listed:
  • Kyoo-Chul Park

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Philseok Kim

    (Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Alison Grinthal

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • Neil He

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • David Fox

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • James C. Weaver

    (Wyss Institute for Biologically Inspired Engineering, Harvard University)

  • Joanna Aizenberg

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Wyss Institute for Biologically Inspired Engineering, Harvard University
    Harvard University)

Abstract

A surface engineering approach is described that is inspired by the water-condensation capability of the bumps on desert beetles, the droplet transportation facilitated by cactus spines and the slippery coating of the pitcher plant, to produce a structure with many water-harvesting applications.

Suggested Citation

  • Kyoo-Chul Park & Philseok Kim & Alison Grinthal & Neil He & David Fox & James C. Weaver & Joanna Aizenberg, 2016. "Condensation on slippery asymmetric bumps," Nature, Nature, vol. 531(7592), pages 78-82, March.
  • Handle: RePEc:nat:nature:v:531:y:2016:i:7592:d:10.1038_nature16956
    DOI: 10.1038/nature16956
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16956
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yalong Kong & Zhigang Liu & Lin Guo & Yu Qiu, 2022. "The Self-Actuating Droplet That Can Turn: A Molecular Dynamics Simulation," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Wenming Li & Siyan Yang & Yongping Chen & Chen Li & Zuankai Wang, 2023. "Tesla valves and capillary structures-activated thermal regulator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Guoying Bai & Haiyan Zhang & Dong Gao & Houguo Fei & Cunlan Guo & Mingxia Ren & Yufeng Liu, 2024. "Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:531:y:2016:i:7592:d:10.1038_nature16956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.