IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8468-d971069.html
   My bibliography  Save this article

The Self-Actuating Droplet That Can Turn: A Molecular Dynamics Simulation

Author

Listed:
  • Yalong Kong

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Zhigang Liu

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Lin Guo

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Yu Qiu

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

Abstract

Water collection remains a fundamental challenge to stable and efficient operation of the solar desalination system. Functional surfaces that can realize self-actuation of droplets have shown great potential in improving droplet dynamics without external energy. Therefore, a surface that can make a droplet move spontaneously along a curve was designed for smart droplet manipulation, and the mechanism of the droplet motion was revealed through molecular dynamics simulations. Influences of the wettability difference between the curved track and the background, the width of curved track, and the temperature were evaluated via simulations. The results show that the surface on which the curved track and the background are both hydrophobic enables a faster actuating velocity of the droplet than the hydrophilic-hydrophobic surface and the hydrophilic-hydrophilic surface. The width of the curved track also affects the actuating velocity of the droplet and increasing the TRACK width can increase the actuating velocity of the droplet. However, actuation of the droplet slows down if the width of the curved track is too large. Overall, the mechanism driving the motion of the droplet along the curve was investigated, which opens new opportunities for the application and manufacturing of water collection in solar desalination.

Suggested Citation

  • Yalong Kong & Zhigang Liu & Lin Guo & Yu Qiu, 2022. "The Self-Actuating Droplet That Can Turn: A Molecular Dynamics Simulation," Energies, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8468-:d:971069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyoo-Chul Park & Philseok Kim & Alison Grinthal & Neil He & David Fox & James C. Weaver & Joanna Aizenberg, 2016. "Condensation on slippery asymmetric bumps," Nature, Nature, vol. 531(7592), pages 78-82, March.
    2. Andrew R. Parker & Chris R. Lawrence, 2001. "Water capture by a desert beetle," Nature, Nature, vol. 414(6859), pages 33-34, November.
    3. Huawei Chen & Pengfei Zhang & Liwen Zhang & Hongliang Liu & Ying Jiang & Deyuan Zhang & Zhiwu Han & Lei Jiang, 2016. "Continuous directional water transport on the peristome surface of Nepenthes alata," Nature, Nature, vol. 532(7597), pages 85-89, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Zhang & Mingchao Chi & Jilong Mo & Tao Liu & Yanhua Liu & Qiu Fu & Jinlong Wang & Bin Luo & Ying Qin & Shuangfei Wang & Shuangxi Nie, 2022. "Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Fessehaye, Mussie & Abdul-Wahab, Sabah A. & Savage, Michael J. & Kohler, Thomas & Gherezghiher, Tseggai & Hurni, Hans, 2014. "Fog-water collection for community use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 52-62.
    4. Guoying Bai & Haiyan Zhang & Dong Gao & Houguo Fei & Cunlan Guo & Mingxia Ren & Yufeng Liu, 2024. "Controlled condensation by liquid contact-induced adaptations of molecular conformations in self-assembled monolayers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Kuanfu Chen & Yujie Tao & Weiwei Shi, 2022. "Recent Advances in Water Harvesting: A Review of Materials, Devices and Applications," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    6. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Rui Feng & Fei Song & Ying-Dan Zhang & Xiu-Li Wang & Yu-Zhong Wang, 2022. "A confined-etching strategy for intrinsic anisotropic surface wetting patterning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Dixit, M. R. & Girja Sharan, 2007. "Leveraged Innovation Management: Key Themes from the Journey of Dewrain Harvest Systems," IIMA Working Papers WP2007-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Francesca Cirisano & Michele Ferrari, 2021. "Superhydrophobicity and Durability in Recyclable Polymers Coating," Sustainability, MDPI, vol. 13(15), pages 1-12, July.
    11. Ghosh, Ritwick & Ray, Tapan K. & Ganguly, Ranjan, 2015. "Cooling tower fog harvesting in power plants – A pilot study," Energy, Elsevier, vol. 89(C), pages 1018-1028.
    12. Shijie Liu & Chengqi Zhang & Tao Shen & Zidong Zhan & Jia Peng & Cunlong Yu & Lei Jiang & Zhichao Dong, 2023. "Efficient agricultural drip irrigation inspired by fig leaf morphology," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    14. Zhifeng Jia & Yingjie Chang & Hao Liu & Ge Li & Zilong Guan & Xingchen Zhang & Ruru Xi & Pengcheng Liu & Yu Liu, 2024. "Characteristics and Estimation of Dew in the Loess Hilly Region of Northern Shaanxi Province, China," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    15. Yuanming Zhang & Ningsi Zhang & Yong Liu & Yong Chen & Huiting Huang & Wenjing Wang & Xiaoming Xu & Yang Li & Fengtao Fan & Jinhua Ye & Zhaosheng Li & Zhigang Zou, 2022. "Homogeneous solution assembled Turing structures with near zero strain semi-coherence interface," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Juanhua Li & Yiren Liu & Tianyu Wu & Zihan Xiao & Jianhang Du & Hongrui Liang & Cuiping Zhou & Jianhua Zhou, 2024. "Barbed arrow-like structure membrane with ultra-high rectification coefficient enables ultra-fast, highly-sensitive lateral-flow assay of cTnI," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Yuan, Yanping & Yu, Xiaoping & Yang, Xiaojiao & Xiao, Yimin & Xiang, Bo & Wang, Yi, 2017. "Bionic building energy efficiency and bionic green architecture: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 771-787.
    18. Wenming Li & Siyan Yang & Yongping Chen & Chen Li & Zuankai Wang, 2023. "Tesla valves and capillary structures-activated thermal regulator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8468-:d:971069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.