IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v603y2022i7901d10.1038_s41586-021-04363-9.html
   My bibliography  Save this article

Wind dispersal of battery-free wireless devices

Author

Listed:
  • Vikram Iyer

    (University of Washington)

  • Hans Gaensbauer

    (University of Washington)

  • Thomas L. Daniel

    (University of Washington)

  • Shyamnath Gollakota

    (University of Washington
    University of Washington)

Abstract

Plants cover a large fraction of the Earth’s land mass despite most species having limited to no mobility. To transport their propagules, many plants have evolved mechanisms to disperse their seeds using the wind1–4. A dandelion seed, for example, has a bristly filament structure that decreases its terminal velocity and helps orient the seed as it wafts to the ground5. Inspired by this, we demonstrate wind dispersal of battery-free wireless sensing devices. Our millimetre-scale devices weigh 30 milligrams and are designed on a flexible substrate using programmable, off-the-shelf parts to enable scalability and flexibility for various sensing and computing applications. The system is powered using lightweight solar cells and an energy harvesting circuit that is robust to low and variable light conditions, and has a backscatter communication link that enables data transmission. To achieve the wide-area dispersal and upright landing that is necessary for solar power harvesting, we developed dandelion-inspired, thin-film porous structures that achieve a terminal velocity of 0.87 ± 0.02 metres per second and aerodynamic stability with a probability of upright landing of over 95%. Our results in outdoor environments demonstrate that these devices can travel 50–100 metres in gentle to moderate breeze. Finally, in natural systems, variance in individual seed morphology causes some seeds to fall closer and others to travel farther. We adopt a similar approach and show how we can modulate the porosity and diameter of the structures to achieve dispersal variation across devices.

Suggested Citation

  • Vikram Iyer & Hans Gaensbauer & Thomas L. Daniel & Shyamnath Gollakota, 2022. "Wind dispersal of battery-free wireless devices," Nature, Nature, vol. 603(7901), pages 427-433, March.
  • Handle: RePEc:nat:nature:v:603:y:2022:i:7901:d:10.1038_s41586-021-04363-9
    DOI: 10.1038/s41586-021-04363-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04363-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04363-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feilong Zhang & Dong Li & Changxian Wang & Zhihua Liu & Man Yang & Zequn Cui & Junqi Yi & Ming Wang & Ying Jiang & Zhisheng Lv & Shutao Wang & Huajian Gao & Xiaodong Chen, 2022. "Shape morphing of plastic films," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Dan Wang & Zhaomin Chen & Mingtong Li & Zhen Hou & Changsong Zhan & Qijun Zheng & Dalei Wang & Xin Wang & Mengjiao Cheng & Wenqi Hu & Bin Dong & Feng Shi & Metin Sitti, 2023. "Bioinspired rotary flight of light-driven composite films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jianfeng Yang & M. Ravi Shankar & Hao Zeng, 2024. "Photochemically responsive polymer films enable tunable gliding flights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:603:y:2022:i:7901:d:10.1038_s41586-021-04363-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.