IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7727d10.1038_s41586-018-0604-2.html
   My bibliography  Save this article

A separated vortex ring underlies the flight of the dandelion

Author

Listed:
  • Cathal Cummins

    (University of Edinburgh
    University of Edinburgh
    University of Edinburgh)

  • Madeleine Seale

    (University of Edinburgh
    University of Edinburgh
    University of Edinburgh)

  • Alice Macente

    (University of Edinburgh
    University of Edinburgh
    University of Glasgow)

  • Daniele Certini

    (University of Edinburgh)

  • Enrico Mastropaolo

    (University of Edinburgh)

  • Ignazio Maria Viola

    (University of Edinburgh)

  • Naomi Nakayama

    (University of Edinburgh
    University of Edinburgh
    University of Edinburgh)

Abstract

Wind-dispersed plants have evolved ingenious ways to lift their seeds1,2. The common dandelion uses a bundle of drag-enhancing bristles (the pappus) that helps to keep their seeds aloft. This passive flight mechanism is highly effective, enabling seed dispersal over formidable distances3,4; however, the physics underpinning pappus-mediated flight remains unresolved. Here we visualized the flow around dandelion seeds, uncovering an extraordinary type of vortex. This vortex is a ring of recirculating fluid, which is detached owing to the flow passing through the pappus. We hypothesized that the circular disk-like geometry and the porosity of the pappus are the key design features that enable the formation of the separated vortex ring. The porosity gradient was surveyed using microfabricated disks, and a disk with a similar porosity was found to be able to recapitulate the flow behaviour of the pappus. The porosity of the dandelion pappus appears to be tuned precisely to stabilize the vortex, while maximizing aerodynamic loading and minimizing material requirements. The discovery of the separated vortex ring provides evidence of the existence of a new class of fluid behaviour around fluid-immersed bodies that may underlie locomotion, weight reduction and particle retention in biological and manmade structures.

Suggested Citation

  • Cathal Cummins & Madeleine Seale & Alice Macente & Daniele Certini & Enrico Mastropaolo & Ignazio Maria Viola & Naomi Nakayama, 2018. "A separated vortex ring underlies the flight of the dandelion," Nature, Nature, vol. 562(7727), pages 414-418, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7727:d:10.1038_s41586-018-0604-2
    DOI: 10.1038/s41586-018-0604-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0604-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0604-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madeleine Seale & Annamaria Kiss & Simone Bovio & Ignazio Maria Viola & Enrico Mastropaolo & Arezki Boudaoud & Naomi Nakayama, 2022. "Dandelion pappus morphing is actuated by radially patterned material swelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Jianfeng Yang & M. Ravi Shankar & Hao Zeng, 2024. "Photochemically responsive polymer films enable tunable gliding flights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Wang, Binbin & Sullivan, Lauren L. & Wood, Jeffrey D., 2023. "Modeling wind-driven seed dispersal using a coupled Lagrangian particle tracking and 1-D k-ɛ turbulence model," Ecological Modelling, Elsevier, vol. 486(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7727:d:10.1038_s41586-018-0604-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.