IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v521y2015i7553d10.1038_nature14542.html
   My bibliography  Save this article

Science, technology and the future of small autonomous drones

Author

Listed:
  • Dario Floreano

    (Laboratory of Intelligent Systems, Ecole Polytechnique Fédérale de Lausanne)

  • Robert J. Wood

    (Microrobotics Lab, Harvard University)

Abstract

We are witnessing the advent of a new era of robots — drones — that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

Suggested Citation

  • Dario Floreano & Robert J. Wood, 2015. "Science, technology and the future of small autonomous drones," Nature, Nature, vol. 521(7553), pages 460-466, May.
  • Handle: RePEc:nat:nature:v:521:y:2015:i:7553:d:10.1038_nature14542
    DOI: 10.1038/nature14542
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14542
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xun & Pasch, Timothy J. & Bergstrom, Aaron, 2020. "Understanding the structure of risk belief systems concerning drone delivery: A network analysis," Technology in Society, Elsevier, vol. 62(C).
    2. Fügener, A. & Grahl, J. & Gupta, A. & Ketter, W., 2019. "Cognitive challenges in human-AI collaboration: Investigating the path towards productive delegation," ERIM Report Series Research in Management ERS-2019-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Yunus Emre Ayözen, 2023. "Statistical Optimization of E-Scooter Micro-Mobility Utilization in Postal Service," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. David Reiser & Galibjon M. Sharipov & Gero Hubel & Volker Nannen & Hans W. Griepentrog, 2023. "Development and Experimental Validation of an Agricultural Robotic Platform with High Traction and Low Compaction," Agriculture, MDPI, vol. 13(8), pages 1-15, July.
    5. Emanuele Aucone & Christian Geckeler & Daniele Morra & Lucia Pallottino & Stefano Mintchev, 2024. "Synergistic morphology and feedback control for traversal of unknown compliant obstacles with aerial robots," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ilona Kulikovskikh & Sergej Prokhorov & Tomislav Lipić & Tarzan Legović & Tomislav Šmuc, 2019. "BioGD: Bio-inspired robust gradient descent," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    7. Stöcker, Claudia & Bennett, Rohan & Koeva, Mila & Nex, Francesco & Zevenbergen, Jaap, 2022. "Scaling up UAVs for land administration: Towards the plateau of productivity," Land Use Policy, Elsevier, vol. 114(C).
    8. Hongbo He & Xiaohan Liao & Huping Ye & Chenchen Xu & Huanyin Yue, 2023. "Data-Driven Insights into Population Exposure Risks: Towards Sustainable and Safe Urban Airspace Utilization by Unmanned Aerial Systems," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    9. Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Schniederjans, Dara G. & Curado, Carla & Khalajhedayati, Mehrnaz, 2020. "Supply chain digitisation trends: An integration of knowledge management," International Journal of Production Economics, Elsevier, vol. 220(C).
    11. Kai Fukami & Kunihiko Taira, 2023. "Grasping extreme aerodynamics on a low-dimensional manifold," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    13. Gupta, Shaphali & Leszkiewicz, Agata & Kumar, V. & Bijmolt, Tammo & Potapov, Dmitriy, 2020. "Digital Analytics: Modeling for Insights and New Methods," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 26-43.
    14. Wang, Ning & Mutzner, Nico & Blanchet, Karl, 2023. "Societal acceptance of urban drones: A scoping literature review," Technology in Society, Elsevier, vol. 75(C).
    15. Gonzalo Fernandez-Sanchez & Alvaro Fernandez-Heredia, 2018. "Strategic Thinking for Sustainability: A Review of 10 Strategies for Sustainable Mobility by Bus for Cities," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    16. Jianwei Sun & Koichi Yonezawa & Eiji Shima & Hao Liu, 2023. "Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
    17. Christian Wankmüller & Christian Truden & Christopher Korzen & Philipp Hungerländer & Ewald Kolesnik & Gerald Reiner, 2020. "Optimal allocation of defibrillator drones in mountainous regions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 785-814, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:521:y:2015:i:7553:d:10.1038_nature14542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.