IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38194-1.html
   My bibliography  Save this article

Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols

Author

Listed:
  • Linghui Peng

    (Guangdong University of Technology
    Guangdong University of Technology)

  • Haiyu Wang

    (Guangdong University of Technology
    Guangdong University of Technology)

  • Guiying Li

    (Guangdong University of Technology
    Guangdong University of Technology)

  • Zhishu Liang

    (Guangdong University of Technology
    Guangdong University of Technology)

  • Weiping Zhang

    (Guangdong University of Technology
    Guangdong University of Technology)

  • Weina Zhao

    (Guangdong University of Technology
    Guangdong University of Technology)

  • Taicheng An

    (Guangdong University of Technology
    Guangdong University of Technology)

Abstract

Bioaerosol can cause the spread of disease, and therefore, capture and inactivation of bioaerosols is desirable. However, filtration systems can easily become blocked, and are often unable to inactivate the bioaerosol once it is captured. Herein, we reported a bioinspired artificial spider silk (ASS) photocatalyst, consisting of a periodic spindle structure of TiO2 on nylon fiber that can efficiently capture and concentrate airborne bacteria, followed by photocatalytic inactivation in situ, without a power-supply exhaust system. The ASS photocatalyst exhibits a higher capture capacity than the nylon fiber substrate and a photocatalytic inactivation efficiency of 99.99% obtained under 4 h irradiation. We found that the capture capacity of the ASS photocatalyst can be mainly attributed to the synergistic effects of hydrophilicity, Laplace pressure differences caused by the size of the spindle knots and surface energy gradients induced by surface roughness. The bacteria captured by the ASS photocatalyst are inactivated by photocatalysis within droplets or at the air/photocatalyst interfaces. This strategy paves the way for constructing materials for bioaerosol purification.

Suggested Citation

  • Linghui Peng & Haiyu Wang & Guiying Li & Zhishu Liang & Weiping Zhang & Weina Zhao & Taicheng An, 2023. "Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38194-1
    DOI: 10.1038/s41467-023-38194-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38194-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38194-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ping Li & Jiazhen Li & Xiao Feng & Jie Li & Yuchen Hao & Jinwei Zhang & Hang Wang & Anxiang Yin & Junwen Zhou & Xiaojie Ma & Bo Wang, 2019. "Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Ye Tian & Pingan Zhu & Xin Tang & Chunmei Zhou & Jianmei Wang & Tiantian Kong & Min Xu & Liqiu Wang, 2017. "Large-scale water collection of bioinspired cavity-microfibers," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Yongmei Zheng & Hao Bai & Zhongbing Huang & Xuelin Tian & Fu-Qiang Nie & Yong Zhao & Jin Zhai & Lei Jiang, 2010. "Directional water collection on wetted spider silk," Nature, Nature, vol. 463(7281), pages 640-643, February.
    4. Thi Tham Nguyen & Graham R. Johnson & Scott C. Bell & Luke D. Knibbs, 2022. "A Systematic Literature Review of Indoor Air Disinfection Techniques for Airborne Bacterial Respiratory Pathogens," IJERPH, MDPI, vol. 19(3), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Hong & Hu, Yan & Wang, Yuanhao & Yang, Hongxing, 2017. "TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels," Applied Energy, Elsevier, vol. 204(C), pages 932-938.
    2. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Zehang Cui & Yachao Zhang & Zhicheng Zhang & Bingrui Liu & Yiyu Chen & Hao Wu & Yuxuan Zhang & Zilong Cheng & Guoqiang Li & Jiale Yong & Jiawen Li & Dong Wu & Jiaru Chu & Yanlei Hu, 2024. "Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jialin Zhang & Yanjun Liu & Peiyi Wu, 2024. "An elastic piezoelectric nanomembrane with double noise reduction for high-quality bandpass acoustics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Guusje Delen & Matteo Monai & Katarina Stančiaková & Bettina Baumgartner & Florian Meirer & Bert M. Weckhuysen, 2023. "Structure sensitivity in gas sorption and conversion on metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Hashim Alhussain & Saud Ghani & Nahla O. Eltai, 2024. "Breathing Clean Air: Navigating Indoor Air Purification Techniques and Finding the Ideal Solution," IJERPH, MDPI, vol. 21(8), pages 1-18, August.
    7. Kuanfu Chen & Yujie Tao & Weiwei Shi, 2022. "Recent Advances in Water Harvesting: A Review of Materials, Devices and Applications," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    8. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Thi Tham Nguyen & Congrong He & Robyn Carter & Emma L. Ballard & Kim Smith & Robert Groth & Esa Jaatinen & Timothy J. Kidd & Thuy-Khanh Nguyen & Rebecca E. Stockwell & George Tay & Graham R. Johnson &, 2022. "The Effectiveness of Ultraviolet-C (UV-C) Irradiation on the Viability of Airborne Pseudomonas aeruginosa," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
    11. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Riti Thapar Kapoor & Mohd Rafatullah & Mohammad Qamar & Mohammad Qutob & Abeer M. Alosaimi & Hajer S. Alorfi & Mahmoud A. Hussein, 2022. "Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    14. Ying Liu & Chan Wang & Zhuo Liu & Xuecheng Qu & Yansong Gai & Jiangtao Xue & Shengyu Chao & Jing Huang & Yuxiang Wu & Yusheng Li & Dan Luo & Zhou Li, 2024. "Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Ghosh, Ritwick & Ray, Tapan K. & Ganguly, Ranjan, 2015. "Cooling tower fog harvesting in power plants – A pilot study," Energy, Elsevier, vol. 89(C), pages 1018-1028.
    16. Wen-Long Xue & Pascal Kolodzeiski & Hanna Aucharova & Suresh Vasa & Athanasios Koutsianos & Roman Pallach & Jianbo Song & Louis Frentzel-Beyme & Rasmus Linser & Sebastian Henke, 2024. "Highly porous metal-organic framework liquids and glasses via a solvent-assisted linker exchange strategy of ZIF-8," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Ritwick Ghosh & Adrien Baut & Giorgio Belleri & Michael Kappl & Hans-Jürgen Butt & Thomas M. Schutzius, 2023. "Photocatalytically reactive surfaces for simultaneous water harvesting and treatment," Nature Sustainability, Nature, vol. 6(12), pages 1663-1672, December.
    19. Zhifeng Jia & Yingjie Chang & Hao Liu & Ge Li & Zilong Guan & Xingchen Zhang & Ruru Xi & Pengcheng Liu & Yu Liu, 2024. "Characteristics and Estimation of Dew in the Loess Hilly Region of Northern Shaanxi Province, China," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    20. Sang Bin Jeong & Ki Joon Heo & Byung Uk Lee, 2019. "Antimicrobial Air Filters Using Natural Sea Salt Particles for Deactivating Airborne Bacterial Particles," IJERPH, MDPI, vol. 17(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38194-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.