IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38084-6.html
   My bibliography  Save this article

Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA

Author

Listed:
  • Vivian Do

    (Columbia University Mailman School of Public Health)

  • Heather McBrien

    (Columbia University Mailman School of Public Health)

  • Nina M. Flores

    (Columbia University Mailman School of Public Health)

  • Alexander J. Northrop

    (Columbia University)

  • Jeffrey Schlegelmilch

    (Columbia University)

  • Mathew V. Kiang

    (Stanford University School of Medicine)

  • Joan A. Casey

    (Columbia University Mailman School of Public Health
    University of Washington School of Public Health)

Abstract

Power outages threaten public health. While outages will likely increase with climate change, an aging electrical grid, and increased energy demand, little is known about their frequency and distribution within states. Here, we characterize 2018–2020 outages, finding an average of 520 million customer-hours total without power annually across 2447 US counties (73.7% of the US population). 17,484 8+ hour outages (a medically-relevant duration with potential health consequences) and 231,174 1+ hour outages took place, with greatest prevalence in Northeastern, Southern, and Appalachian counties. Arkansas, Louisiana, and Michigan counties experience a dual burden of frequent 8+ hour outages and high social vulnerability and prevalence of electricity-dependent durable medical equipment use. 62.1% of 8+ hour outages co-occur with extreme weather/climate events, particularly heavy precipitation, anomalous heat, and tropical cyclones. Results could support future large-scale epidemiology studies, inform equitable disaster preparedness and response, and prioritize geographic areas for resource allocation and interventions.

Suggested Citation

  • Vivian Do & Heather McBrien & Nina M. Flores & Alexander J. Northrop & Jeffrey Schlegelmilch & Mathew V. Kiang & Joan A. Casey, 2023. "Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38084-6
    DOI: 10.1038/s41467-023-38084-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38084-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38084-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meier, Alan & Ueno, Tsuyoshi & Pritoni, Marco, 2019. "Using data from connected thermostats to track large power outages in the United States," Applied Energy, Elsevier, vol. 256(C).
    2. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    3. Diana Mitsova & Ann-Margaret Esnard & Alka Sapat & Betty S. Lai, 2018. "Socioeconomic vulnerability and electric power restoration timelines in Florida: the case of Hurricane Irma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 689-709, November.
    4. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    5. Shah, Zeal & Klugman, Noah & Cadamuro, Gabriel & Hsu, Feng-Chi & Elvidge, Christopher D. & Taneja, Jay, 2022. "The electricity scene from above: Exploring power grid inconsistencies using satellite data in Accra, Ghana," Applied Energy, Elsevier, vol. 319(C).
    6. DeSalvo, K. & Lurie, N. & Finne, K. & Worrall, C. & Bogdanov, A. & Dinkler, A. & Babcock, S. & Kelman, J., 2014. "Using medicare data to identify individuals who are electricity dependent to improve disaster preparedness and response," American Journal of Public Health, American Public Health Association, vol. 104(7), pages 1160-1164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2020. "Mapping and Spatial Analysis of Electricity Load Shedding Experiences: A Case Study of Communities in Accra, Ghana," Energies, MDPI, vol. 13(17), pages 1-26, August.
    2. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
    3. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    4. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    5. Künneke, Rolf & Groenewegen, John & Ménard, Claude, 2010. "Aligning modes of organization with technology: Critical transactions in the reform of infrastructures," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 494-505, September.
    6. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    7. Ian Dobson & Janghoon Kim & Kevin R. Wierzbicki, 2010. "Testing Branching Process Estimators of Cascading Failure with Data from a Simulation of Transmission Line Outages," Risk Analysis, John Wiley & Sons, vol. 30(4), pages 650-662, April.
    8. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    10. Hanif, Sarmad & Mukherjee, Monish & Poudel, Shiva & Yu, Min Gyung & Jinsiwale, Rohit A. & Hardy, Trevor D. & Reeve, Hayden M., 2023. "Analyzing at-scale distribution grid response to extreme temperatures," Applied Energy, Elsevier, vol. 337(C).
    11. Tara C. Walsh & David W. Wanik & Emmanouil N. Anagnostou & Jonathan E. Mellor, 2020. "Estimated Time to Restoration of Hurricane Sandy in a Future Climate," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    12. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    13. Cheng-Chun Lee & Mikel Maron & Ali Mostafavi, 2022. "Community-scale big data reveals disparate impacts of the Texas winter storm of 2021 and its managed power outage," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    14. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    15. Sayanti Mukherjee & Roshanak Nateghi, 2019. "A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 673-694, March.
    16. Xiaoxiao Guo & Yanghong Tan & Feng Wang, 2020. "Modeling and Fault Propagation Analysis of Cyber–Physical Power System," Energies, MDPI, vol. 13(3), pages 1-22, January.
    17. Rafal Ali & Ikramullah Khosa & Ammar Armghan & Jehangir Arshad & Sajjad Rabbani & Naif Alsharabi & Habib Hamam, 2022. "Financial Hazard Prediction Due to Power Outages Associated with Severe Weather-Related Natural Disaster Categories," Energies, MDPI, vol. 15(24), pages 1-25, December.
    18. Kelly Klima & M. Morgan, 2015. "Ice storm frequencies in a warmer climate," Climatic Change, Springer, vol. 133(2), pages 209-222, November.
    19. Thomas, Douglas & Fung, Juan, 2022. "Measuring downstream supply chain losses due to power disturbances," Energy Economics, Elsevier, vol. 114(C).
    20. Chen, Haoling & Zhao, Tongtiegang, 2020. "Modeling power loss during blackouts in China using non-stationary generalized extreme value distribution," Energy, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38084-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.