IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4280-d400748.html
   My bibliography  Save this article

Mapping and Spatial Analysis of Electricity Load Shedding Experiences: A Case Study of Communities in Accra, Ghana

Author

Listed:
  • Paul Nduhuura

    (Department of Mechanical Engineering, Faculty of Technology, University of Tlemcen, B.P. 119|Pôle Chetouane, Tlemcen 13000, Algeria
    United Nations University Institute for Environment and Human Security (UNU-EHS), UN Campus, Platz der Vereinten Nationen 1, D-53113 Bonn, Germany
    Pan African University Institute of Water and Energy Sciences—PAUWES, c/o University of Tlemcen, B.P. 119|Pôle Chetouane, Tlemcen 13000, Algeria)

  • Matthias Garschagen

    (Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstrasse 37, 80333 München, Germany)

  • Abdellatif Zerga

    (Pan African University Institute of Water and Energy Sciences—PAUWES, c/o University of Tlemcen, B.P. 119|Pôle Chetouane, Tlemcen 13000, Algeria)

Abstract

In many developing countries, electricity outages occur frequently with consequences for sustainable development. Moreover, within a country, region or city, the distribution of outages and their resultant impacts often vary from one locality to another. However, due to data constraints, local-scale variations in outage experiences have seldom been examined in African countries. In this study, a spatial approach is used to estimate and compare exposure to electricity load shedding outages across communities in the city of Accra, Ghana. Geographic Information System and statistics from the 2015 rolling blackouts are used to quantify neighborhood-level load shedding experiences and examine for spatial patterns. The results show that annual load shedding exposure varied greatly, ranging from 1117 to 3244 h. The exposure values exhibit statistically significant spatial clustering (Moran’s I = 0.3329, p < 0.01). Several neighborhoods classified as load shedding hot or cold spots, clusters and outliers are also identified. Using a spatial approach to quantify load shedding exposure was helpful for overcoming the limitations of lack of fine-grained, micro-level outage data that is often necessary for such an analysis. This approach can therefore be used in other data-constrained cities and regions. The significant global spatial autocorrelation of load-shedding exposure values also suggests influence by underlying spatial processes in shaping the distribution of load shedding experiences. The resultant exposure maps provide vital information on spatial disparities in load shedding implementation, which can be used to influence decisions and policies towards all-inclusive and sustainable electrification.

Suggested Citation

  • Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2020. "Mapping and Spatial Analysis of Electricity Load Shedding Experiences: A Case Study of Communities in Accra, Ghana," Energies, MDPI, vol. 13(17), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4280-:d:400748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tyralis, Hristos & Mamassis, Nikos & Photis, Yorgos N., 2017. "Spatial analysis of the electrical energy demand in Greece," Energy Policy, Elsevier, vol. 102(C), pages 340-352.
    2. Liévanos, Raoul S. & Horne, Christine, 2017. "Unequal resilience: The duration of electricity outages," Energy Policy, Elsevier, vol. 108(C), pages 201-211.
    3. Arnette, Andrew N. & Zobel, Christopher W., 2011. "Spatial analysis of renewable energy potential in the greater southern Appalachian mountains," Renewable Energy, Elsevier, vol. 36(11), pages 2785-2798.
    4. Mensah,Justice Tei, 2018. "Jobs ! electricity shortages and unemployment in Africa," Policy Research Working Paper Series 8415, The World Bank.
    5. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    6. Hualin Xie & Guiying Liu & Qu Liu & Peng Wang, 2014. "Analysis of Spatial Disparities and Driving Factors of Energy Consumption Change in China Based on Spatial Statistics," Sustainability, MDPI, vol. 6(4), pages 1-17, April.
    7. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    8. Andersen, Thomas Barnebeck & Dalgaard, Carl-Johan, 2013. "Power outages and economic growth in Africa," Energy Economics, Elsevier, vol. 38(C), pages 19-23.
    9. Moyo, Busani, 2013. "Power infrastructure quality and manufacturing productivity in Africa: A firm level analysis," Energy Policy, Elsevier, vol. 61(C), pages 1063-1070.
    10. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Zhou, Kan & Wang, Ya-Fei, 2019. "A study on the spatial distribution of the renewable energy industries in China and their driving factors," Renewable Energy, Elsevier, vol. 139(C), pages 161-175.
    11. DeVynne Farquharson & Paulina Jaramillo & Constantine Samaras, 2018. "Sustainability implications of electricity outages in sub-Saharan Africa," Nature Sustainability, Nature, vol. 1(10), pages 589-597, October.
    12. Diana Mitsova & Ann-Margaret Esnard & Alka Sapat & Betty S. Lai, 2018. "Socioeconomic vulnerability and electric power restoration timelines in Florida: the case of Hurricane Irma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 689-709, November.
    13. Ryan Engstrom & Caetlin Ofiesh & David Rain & Henry Jewell & John Weeks, 2013. "Defining neighborhood boundaries for urban health research in developing countries: a case study of Accra, Ghana," Journal of Maps, Taylor & Francis Journals, vol. 9(1), pages 36-42, March.
    14. Cole, Matthew A. & Elliott, Robert J.R. & Occhiali, Giovanni & Strobl, Eric, 2018. "Power outages and firm performance in Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 150-159.
    15. Ghanem, Dana Abi & Mander, Sarah & Gough, Clair, 2016. "“I think we need to get a better generator”: Household resilience to disruption to power supply during storm events," Energy Policy, Elsevier, vol. 92(C), pages 171-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2021. "Impacts of Electricity Outages in Urban Households in Developing Countries: A Case of Accra, Ghana," Energies, MDPI, vol. 14(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2021. "Impacts of Electricity Outages in Urban Households in Developing Countries: A Case of Accra, Ghana," Energies, MDPI, vol. 14(12), pages 1-26, June.
    2. Tiwari, Aviral Kumar & Eapen, Leena Mary & Nair, Sthanu R, 2021. "Electricity consumption and economic growth at the state and sectoral level in India: Evidence using heterogeneous panel data methods," Energy Economics, Elsevier, vol. 94(C).
    3. Jamil, Faisal & Islam, Tanweer Ul, 2023. "Outage-induced power backup choice in Pakistan," Utilities Policy, Elsevier, vol. 82(C).
    4. Abiodun, Kehinde & Gilbert, Ben, 2022. "Does universal electrification shield firms from productivity loss?," World Development Perspectives, Elsevier, vol. 28(C).
    5. Thomas, Douglas & Fung, Juan, 2022. "Measuring downstream supply chain losses due to power disturbances," Energy Economics, Elsevier, vol. 114(C).
    6. Chen, Hao & Jin, Lu & Wang, Mingming & Guo, Lin & Wu, Jingwen, 2023. "How will power outages affect the national economic growth: Evidence from 152 countries," Energy Economics, Elsevier, vol. 126(C).
    7. Vivian Do & Heather McBrien & Nina M. Flores & Alexander J. Northrop & Jeffrey Schlegelmilch & Mathew V. Kiang & Joan A. Casey, 2023. "Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Yu, Jian & Liu, Peng & Fu, Dahai & Shi, Xunpeng, 2023. "How do power shortages affect CO2 emission intensity? Firm-level evidence from China," Energy, Elsevier, vol. 282(C).
    9. Jonathan D. Quartey, 2021. "Energizing Africa Sustainably: Lessons from Ghana’s Electricity Infrastructure," International Journal of Publication and Social Studies, Asian Economic and Social Society, vol. 6(1), pages 1-17, June.
    10. Co, Catherine Y., 2014. "Supply-side constraints, capital goods imports, and the quality of Sub-Saharan African countries exports," WIDER Working Paper Series 142, World Institute for Development Economic Research (UNU-WIDER).
    11. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    12. Ahmad, Hafsa & Jamil, Faisal, 2024. "Investigating power outages in Pakistan," Energy Policy, Elsevier, vol. 189(C).
    13. Qianna Wang & Martin Mwirigi M'Ikiugu & Isami Kinoshita, 2014. "A GIS-Based Approach in Support of Spatial Planning for Renewable Energy: A Case Study of Fukushima, Japan," Sustainability, MDPI, vol. 6(4), pages 1-31, April.
    14. Hamish Beath & Shivika Mittal & Sheridan Few & Benedict Winchester & Philip Sandwell & Christos N. Markides & Jenny Nelson & Ajay Gambhir, 2024. "Carbon pricing and system reliability impacts on pathways to universal electricity access in Africa," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Fedajev, Aleksandra & Mitić, Petar & Kojić, Milena & Radulescu, Magdalena, 2023. "Driving industrial and economic growth in Central and Eastern Europe: The role of electricity infrastructure and renewable energy," Utilities Policy, Elsevier, vol. 85(C).
    16. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
    17. Owebor, K. & Diemuodeke, E.O. & Briggs, T.A. & Imran, M., 2021. "Power Situation and renewable energy potentials in Nigeria – A case for integrated multi-generation technology," Renewable Energy, Elsevier, vol. 177(C), pages 773-796.
    18. Catherine Y. Co, 2014. "Supply-Side Constraints, Capital Goods Imports, and the Quality of Sub-Saharan African Countries' Exports," WIDER Working Paper Series wp-2014-142, World Institute for Development Economic Research (UNU-WIDER).
    19. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    20. Kerianne Lawson, 2022. "Electricity outages and residential fires: Evidence from Cape Town, South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 90(4), pages 469-485, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4280-:d:400748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.