IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i12p5249-5259.html
   My bibliography  Save this article

Large blackouts in North America: Historical trends and policy implications

Author

Listed:
  • Hines, Paul
  • Apt, Jay
  • Talukdar, Sarosh

Abstract

Using data from the North American Electric Reliability Council (NERC) for 1984-2006, we find several trends. We find that the frequency of large blackouts in the United States has not decreased over time, that there is a statistically significant increase in blackout frequency during peak hours of the day and during late summer and mid-winter months (although non-storm-related risk is nearly constant through the year) and that there is strong statistical support for the previously observed power-law statistical relationship between blackout size and frequency. We do not find that blackout sizes and blackout durations are significantly correlated. These trends hold even after controlling for increasing demand and population and after eliminating small events, for which the data may be skewed by spotty reporting. Trends in blackout occurrences, such as those observed in the North American data, have important implications for those who make investment and policy decisions in the electricity industry. We provide a number of examples that illustrate how these trends can inform benefit-cost analysis calculations. Also, following procedures used in natural disaster planning we use the observed statistical trends to calculate the size of the 100-year blackout, which for North America is 186,000Â MW.

Suggested Citation

  • Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5249-5259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00566-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greenberg, Michael & Mantell, Nancy & Lahr, Michael & Felder, Frank & Zimmerman, Rae, 2007. "Short and intermediate economic impacts of a terrorist-initiated loss of electric power: Case study of New Jersey," Energy Policy, Elsevier, vol. 35(1), pages 722-733, January.
    2. Talukdar, Sarosh N. & Apt, Jay & Ilic, Marija & Lave, Lester B. & Morgan, M. Granger, 2003. "Cascading Failures: Survival versus Prevention," The Electricity Journal, Elsevier, vol. 16(9), pages 25-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Adri?n Romero & Omar Osvaldo Chisari & Leonardo Javier Mastronardi & Arturo Leonardo V?squez Cordano, 2015. "The cost of failing to prevent gas supply interruption: A CGE assessment for Peru," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 131-148.
    2. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    3. Sue Wing, Ian & Rose, Adam Z., 2020. "Economic consequence analysis of electric power infrastructure disruptions: General equilibrium approaches," Energy Economics, Elsevier, vol. 89(C).
    4. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    5. Sunhee Baik & M. Granger Morgan & Alexander L. Davis, 2018. "Providing Limited Local Electric Service During a Major Grid Outage: A First Assessment Based on Customer Willingness to Pay," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 272-282, February.
    6. Coaffee, Jon, 2008. "Risk, resilience, and environmentally sustainable cities," Energy Policy, Elsevier, vol. 36(12), pages 4633-4638, December.
    7. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    8. Chen, Haoling & Zhao, Tongtiegang, 2020. "Modeling power loss during blackouts in China using non-stationary generalized extreme value distribution," Energy, Elsevier, vol. 195(C).
    9. Galbraith, John W. & Iuliani, Luca, 2019. "Measures of robustness for networked critical infrastructure: An empirical comparison on four electrical grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).
    10. Seppänen, Hannes & Luokkala, Pekka & Zhang, Zhe & Torkki, Paulus & Virrantaus, Kirsi, 2018. "Critical infrastructure vulnerability—A method for identifying the infrastructure service failure interdependencies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 25-38.
    11. Umberto Monarca & Ernesto Cassetta & Alessandro Sarra & Cesare Pozzi, 2015. "Integrating renewable energy sources into electricity markets: Power system operation, resource adequacy and market design," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 149-166.
    12. Jonathan Eyer & Adam Rose, 2019. "Mitigation and Resilience Tradeoffs for Electricity Outages," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 61-77, April.
    13. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5249-5259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.