IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p539-d311913.html
   My bibliography  Save this article

Modeling and Fault Propagation Analysis of Cyber–Physical Power System

Author

Listed:
  • Xiaoxiao Guo

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yanghong Tan

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Feng Wang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    College of Electronic and Information Engineering, Yili Normal University, Yining 835000, China)

Abstract

In cyber–physical power systems (CPPSs), the interaction mechanisms between physical systems and cyber systems are becoming more and more complicated. Their deep integration has brought new unstable factors to the system. Faults or attacks may cause a chain reaction, such as control failure, state deterioration, or even outage, which seriously threatens the safe and stable operation of power grids. In this paper, given the interaction mechanisms, we propose an interdependent model of CPPS, based on a characteristic association method. Utilizing this model, we can study the fault propagation mechanisms when faulty or under cyber-attack. Simulation results quantitatively reveal the propagation process of fault risks and the impacts on the CPPS due to the change of state quantity of the system model.

Suggested Citation

  • Xiaoxiao Guo & Yanghong Tan & Feng Wang, 2020. "Modeling and Fault Propagation Analysis of Cyber–Physical Power System," Energies, MDPI, vol. 13(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:539-:d:311913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye Cai & Yu Chen & Yong Li & Yijia Cao & Xiangjun Zeng, 2018. "Reliability Analysis of Cyber–Physical Systems: Case of the Substation Based on the IEC 61850 Standard in China," Energies, MDPI, vol. 11(10), pages 1-12, September.
    2. Jia Guo & Yuqi Han & Chuangxin Guo & Fengdan Lou & Yanbo Wang, 2017. "Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties," Energies, MDPI, vol. 10(1), pages 1-21, January.
    3. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    4. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    5. Ouyang, Min & Zhao, Lijing & Pan, Zhezhe & Hong, Liu, 2014. "Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 45-53.
    6. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    2. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    3. Pablo E. Achurra-Gonzalez & Panagiotis Angeloudis & Nils Goldbeck & Daniel J. Graham & Konstantinos Zavitsas & Marc E. J. Stettler, 2019. "Evaluation of port disruption impacts in the global liner shipping network," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-21, December.
    4. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    5. Wang, Shuliang & Stanley, H. Eugene & Gao, Yachun, 2018. "A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 21-29.
    6. Ying Wang & Xiangmei Li & Jiangfeng Li & Zhengdong Huang & Renbin Xiao, 2018. "Impact of Rapid Urbanization on Vulnerability of Land System from Complex Networks View: A Methodological Approach," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    7. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    8. Xinglong Wang & Shangfei Miao & Junqing Tang, 2020. "Vulnerability and Resilience Analysis of the Air Traffic Control Sector Network in China," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    9. Wang, Shuliang & Zhang, Jianhua & Zhao, Mingwei & Min, Xu, 2017. "Vulnerability analysis and critical areas identification of the power systems under terrorist attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 156-165.
    10. Andrea Garcia Tapia & Mildred Suarez & Jose E. Ramirez‐Marquez & Kash Barker, 2019. "Evaluating and Visualizing the Economic Impact of Commercial Districts Due to an Electric Power Network Disruption," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2032-2053, September.
    11. Mo, Huadong & Xie, Min & Levitin, Gregory, 2015. "Optimal resource distribution between protection and redundancy considering the time and uncertainties of attacks," European Journal of Operational Research, Elsevier, vol. 243(1), pages 200-210.
    12. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    13. Nikolai Voropai, 2020. "Electric Power System Transformations: A Review of Main Prospects and Challenges," Energies, MDPI, vol. 13(21), pages 1-16, October.
    14. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    15. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    16. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    18. Xuelei Meng & Yahui Wang & Limin Jia & Lei Li, 2020. "Reliability Optimization of a Railway Network," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    19. Vivian Do & Heather McBrien & Nina M. Flores & Alexander J. Northrop & Jeffrey Schlegelmilch & Mathew V. Kiang & Joan A. Casey, 2023. "Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:539-:d:311913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.