IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i3p673-694.html
   My bibliography  Save this article

A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand

Author

Listed:
  • Sayanti Mukherjee
  • Roshanak Nateghi

Abstract

The U.S. electric power system is increasingly vulnerable to the adverse impacts of extreme climate events. Supply inadequacy risk can result from climate‐induced shifts in electricity demand and/or damaged physical assets due to hydro‐meteorological hazards and climate change. In this article, we focus on the risks associated with the unanticipated climate‐induced demand shifts and propose a data‐driven approach to identify risk factors that render the electricity sector vulnerable in the face of future climate variability and change. More specifically, we have leveraged advanced supervised learning theory to identify the key predictors of climate‐sensitive demand in the residential, commercial, and industrial sectors. Our analysis indicates that variations in mean dew point temperature is the common major risk factor across all the three sectors. We have also conducted a statistical sensitivity analysis to assess the variability in the projected demand as a function of the key climate risk factor. We then propose the use of scenario‐based heat maps as a tool to communicate the inadequacy risks to stakeholders and decisionmakers. While we use the state of Ohio as a case study, our proposed approach is equally applicable to all other states.

Suggested Citation

  • Sayanti Mukherjee & Roshanak Nateghi, 2019. "A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 673-694, March.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:3:p:673-694
    DOI: 10.1111/risa.13192
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13192
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    2. Hines, Paul & Apt, Jay & Talukdar, Sarosh, 2009. "Large blackouts in North America: Historical trends and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5249-5259, December.
    3. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    4. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    5. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    6. Roshanak Nateghi & Sayanti Mukherjee, 2017. "A multi-paradigm framework to assess the impacts of climate change on end-use energy demand," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    7. Eric Hirst, 1992. "Price and Cost Impacts of Utility DSM Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 75-90.
    8. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganguly, Prasangsha & Mukherjee, Sayanti, 2021. "A multifaceted risk assessment approach using statistical learning to evaluate socio-environmental factors associated with regional felony and misdemeanor rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    4. Renee Obringer & Rohini Kumar & Roshanak Nateghi, 2020. "Managing the water–electricity demand nexus in a warming climate," Climatic Change, Springer, vol. 159(2), pages 233-252, March.
    5. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
    6. Obringer, Renee & Mukherjee, Sayanti & Nateghi, Roshanak, 2020. "Evaluating the climate sensitivity of coupled electricity-natural gas demand using a multivariate framework," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
    2. Obringer, Renee & Mukherjee, Sayanti & Nateghi, Roshanak, 2020. "Evaluating the climate sensitivity of coupled electricity-natural gas demand using a multivariate framework," Applied Energy, Elsevier, vol. 262(C).
    3. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    4. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    5. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    6. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    7. Ahmed, T. & Muttaqi, K.M. & Agalgaonkar, A.P., 2012. "Climate change impacts on electricity demand in the State of New South Wales, Australia," Applied Energy, Elsevier, vol. 98(C), pages 376-383.
    8. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
    9. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    10. Tung, Ching-Pin & Tseng, Tze-Chi & Huang, An-Lei & Liu, Tzu-Ming & Hu, Ming-Che, 2013. "Impact of climate change on Taiwanese power market determined using linear complementarity model," Applied Energy, Elsevier, vol. 102(C), pages 432-439.
    11. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    12. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    13. Eshraghi, Hadi & Rodrigo de Queiroz, Anderson & Sankarasubramanian, A. & DeCarolis, Joseph F., 2021. "Quantification of climate-induced interannual variability in residential U.S. electricity demand," Energy, Elsevier, vol. 236(C).
    14. Mukhopadhyay, Sayanti & Nateghi, Roshanak, 2017. "Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States," Energy, Elsevier, vol. 128(C), pages 688-700.
    15. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    16. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    17. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    18. Renee Obringer & Rohini Kumar & Roshanak Nateghi, 2020. "Managing the water–electricity demand nexus in a warming climate," Climatic Change, Springer, vol. 159(2), pages 233-252, March.
    19. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    20. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:3:p:673-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.