IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7746d10.1038_s41586-019-0975-z.html
   My bibliography  Save this article

Evidence for moiré excitons in van der Waals heterostructures

Author

Listed:
  • Kha Tran

    (The University of Texas at Austin)

  • Galan Moody

    (National Institute of Standards & Technology)

  • Fengcheng Wu

    (Argonne National Laboratory)

  • Xiaobo Lu

    (Washington University in St Louis)

  • Junho Choi

    (The University of Texas at Austin)

  • Kyounghwan Kim

    (The University of Texas at Austin)

  • Amritesh Rai

    (The University of Texas at Austin)

  • Daniel A. Sanchez

    (The University of Texas at Austin)

  • Jiamin Quan

    (The University of Texas at Austin)

  • Akshay Singh

    (The University of Texas at Austin
    Massachusetts Institute of Technology)

  • Jacob Embley

    (The University of Texas at Austin)

  • André Zepeda

    (The University of Texas at Austin)

  • Marshall Campbell

    (The University of Texas at Austin)

  • Travis Autry

    (National Institute of Standards & Technology)

  • Takashi Taniguchi

    (National Institute of Material Science)

  • Kenji Watanabe

    (National Institute of Material Science)

  • Nanshu Lu

    (The University of Texas at Austin
    The University of Texas at Austin)

  • Sanjay K. Banerjee

    (The University of Texas at Austin)

  • Kevin L. Silverman

    (National Institute of Standards & Technology)

  • Suenne Kim

    (Hanyang University)

  • Emanuel Tutuc

    (The University of Texas at Austin)

  • Li Yang

    (Washington University in St Louis)

  • Allan H. MacDonald

    (The University of Texas at Austin)

  • Xiaoqin Li

    (The University of Texas at Austin
    The University of Texas at Austin)

Abstract

Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit1,2. In van der Waals heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moiré superlattice3. It is widely recognized that the moiré superlattice can modulate the electronic band structure of the material and lead to transport properties such as unconventional superconductivity4 and insulating behaviour driven by correlations5–7; however, the influence of the moiré superlattice on optical properties has not been investigated experimentally. Here we report the observation of multiple interlayer exciton resonances with either positive or negative circularly polarized emission in a molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterobilayer with a small twist angle. We attribute these resonances to excitonic ground and excited states confined within the moiré potential. This interpretation is supported by recombination dynamics and by the dependence of these interlayer exciton resonances on twist angle and temperature. These results suggest the feasibility of engineering artificial excitonic crystals using van der Waals heterostructures for nanophotonics and quantum information applications.

Suggested Citation

  • Kha Tran & Galan Moody & Fengcheng Wu & Xiaobo Lu & Junho Choi & Kyounghwan Kim & Amritesh Rai & Daniel A. Sanchez & Jiamin Quan & Akshay Singh & Jacob Embley & André Zepeda & Marshall Campbell & Trav, 2019. "Evidence for moiré excitons in van der Waals heterostructures," Nature, Nature, vol. 567(7746), pages 71-75, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7746:d:10.1038_s41586-019-0975-z
    DOI: 10.1038/s41586-019-0975-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0975-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0975-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Madeline Winkle & Isaac M. Craig & Stephen Carr & Medha Dandu & Karen C. Bustillo & Jim Ciston & Colin Ophus & Takashi Taniguchi & Kenji Watanabe & Archana Raja & Sinéad M. Griffin & D. Kwabena Bediak, 2023. "Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Hanlin Fang & Qiaoling Lin & Yi Zhang & Joshua Thompson & Sanshui Xiao & Zhipei Sun & Ermin Malic & Saroj P. Dash & Witlef Wieczorek, 2023. "Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Shuai Zhang & Baichang Li & Xinzhong Chen & Francesco L. Ruta & Yinming Shao & Aaron J. Sternbach & A. S. McLeod & Zhiyuan Sun & Lin Xiong & S. L. Moore & Xinyi Xu & Wenjing Wu & Sara Shabani & Lin Zh, 2022. "Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Elena Blundo & Federico Tuzi & Salvatore Cianci & Marzia Cuccu & Katarzyna Olkowska-Pucko & Łucja Kipczak & Giorgio Contestabile & Antonio Miriametro & Marco Felici & Giorgio Pettinari & Takashi Tanig, 2024. "Localisation-to-delocalisation transition of moiré excitons in WSe2/MoSe2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Yufei Sun & Yujia Wang & Enze Wang & Bolun Wang & Hengyi Zhao & Yongpan Zeng & Qinghua Zhang & Yonghuang Wu & Lin Gu & Xiaoyan Li & Kai Liu, 2022. "Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Veronica R. Policht & Henry Mittenzwey & Oleg Dogadov & Manuel Katzer & Andrea Villa & Qiuyang Li & Benjamin Kaiser & Aaron M. Ross & Francesco Scotognella & Xiaoyang Zhu & Andreas Knorr & Malte Selig, 2023. "Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Meng Zhao & Zhongjie Wang & Lu Liu & Chunzheng Wang & Cheng-Yen Liu & Fang Yang & Hua Wu & Chunlei Gao, 2024. "Atomic-scale visualization of the interlayer Rydberg exciton complex in moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Fateme Mahdikhanysarvejahany & Daniel N. Shanks & Matthew Klein & Qian Wang & Michael R. Koehler & David G. Mandrus & Takashi Taniguchi & Kenji Watanabe & Oliver L. A. Monti & Brian J. LeRoy & John R., 2022. "Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Hongbing Cai & Abdullah Rasmita & Qinghai Tan & Jia-Min Lai & Ruihua He & Xiangbin Cai & Yan Zhao & Disheng Chen & Naizhou Wang & Zhao Mu & Zumeng Huang & Zhaowei Zhang & John J. H. Eng & Yuanda Liu &, 2023. "Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Zhen Lian & Dongxue Chen & Yuze Meng & Xiaotong Chen & Ying Su & Rounak Banerjee & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao Cui & Su-Fei Shi, 2023. "Exciton Superposition across Moiré States in a Semiconducting Moiré Superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Valerio Di Giulio & P. A. D. Gonçalves & F. Javier García de Abajo, 2022. "An image interaction approach to quantum-phase engineering of two-dimensional materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Xinyu Huang & Luman Zhang & Lei Tong & Zheng Li & Zhuiri Peng & Runfeng Lin & Wenhao Shi & Kan-Hao Xue & Hongwei Dai & Hui Cheng & Danilo de Camargo Branco & Jianbin Xu & Junbo Han & Gary J. Cheng & X, 2023. "Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7746:d:10.1038_s41586-019-0975-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.