IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32508-5.html
   My bibliography  Save this article

An image interaction approach to quantum-phase engineering of two-dimensional materials

Author

Listed:
  • Valerio Di Giulio

    (ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)

  • P. A. D. Gonçalves

    (ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)

  • F. Javier García de Abajo

    (ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology
    ICREA-Institució Catalana de Recerca i Estudis Avançats)

Abstract

Tuning electrical, optical, and thermal material properties is central for engineering and understanding solid-state systems. In this scenario, atomically thin materials are appealing because of their sensitivity to electric and magnetic gating, as well as to interlayer hybridization. Here, we introduce a radically different approach to material engineering relying on the image interaction experienced by electrons in a two-dimensional material when placed in proximity of an electrically neutral structure. We theoretically show that electrons in a semiconductor atomic layer acquire a quantum phase resulting from the image potential induced by the presence of a neighboring periodic array of conducting ribbons, which in turn modifies the optical, electrical, and thermal properties of the monolayer, giving rise to additional interband optical absorption, plasmon hybridization, and metal-insulator transitions. Beyond its fundamental interest, material engineering based on the image interaction represents a disruptive approach to tailor the properties of atomic layers for application in nanodevices.

Suggested Citation

  • Valerio Di Giulio & P. A. D. Gonçalves & F. Javier García de Abajo, 2022. "An image interaction approach to quantum-phase engineering of two-dimensional materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32508-5
    DOI: 10.1038/s41467-022-32508-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32508-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32508-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guorui Chen & Aaron L. Sharpe & Eli J. Fox & Ya-Hui Zhang & Shaoxin Wang & Lili Jiang & Bosai Lyu & Hongyuan Li & Kenji Watanabe & Takashi Taniguchi & Zhiwen Shi & T. Senthil & David Goldhaber-Gordon , 2020. "Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice," Nature, Nature, vol. 579(7797), pages 56-61, March.
    2. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    3. Yi Yang & Di Zhu & Wei Yan & Akshay Agarwal & Mengjie Zheng & John D. Joannopoulos & Philippe Lalanne & Thomas Christensen & Karl K. Berggren & Marin Soljačić, 2019. "A general theoretical and experimental framework for nanoscale electromagnetism," Nature, Nature, vol. 576(7786), pages 248-252, December.
    4. Jingsi Qiao & Xianghua Kong & Zhi-Xin Hu & Feng Yang & Wei Ji, 2014. "High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Deng Pan & Rui Yu & Hongxing Xu & F. Javier García de Abajo, 2017. "Topologically protected Dirac plasmons in a graphene superlattice," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    6. Kha Tran & Galan Moody & Fengcheng Wu & Xiaobo Lu & Junho Choi & Kyounghwan Kim & Amritesh Rai & Daniel A. Sanchez & Jiamin Quan & Akshay Singh & Jacob Embley & André Zepeda & Marshall Campbell & Trav, 2019. "Evidence for moiré excitons in van der Waals heterostructures," Nature, Nature, vol. 567(7746), pages 71-75, March.
    7. Guorui Chen & Aaron L. Sharpe & Eli J. Fox & Ya-Hui Zhang & Shaoxin Wang & Lili Jiang & Bosai Lyu & Hongyuan Li & Kenji Watanabe & Takashi Taniguchi & Zhiwen Shi & T. Senthil & David Goldhaber-Gordon , 2020. "Publisher Correction: Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice," Nature, Nature, vol. 581(7807), pages 3-3, May.
    8. José M. Caridad & Stephen Connaughton & Christian Ott & Heiko B. Weber & Vojislav Krstić, 2016. "An electrical analogy to Mie scattering," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    9. Chenhao Jin & Emma C. Regan & Aiming Yan & M. Iqbal Bakti Utama & Danqing Wang & Sihan Zhao & Ying Qin & Sijie Yang & Zhiren Zheng & Shenyang Shi & Kenji Watanabe & Takashi Taniguchi & Sefaattin Tonga, 2019. "Observation of moiré excitons in WSe2/WS2 heterostructure superlattices," Nature, Nature, vol. 567(7746), pages 76-80, March.
    10. C. R. Dean & L. Wang & P. Maher & C. Forsythe & F. Ghahari & Y. Gao & J. Katoch & M. Ishigami & P. Moon & M. Koshino & T. Taniguchi & K. Watanabe & K. L. Shepard & J. Hone & P. Kim, 2013. "Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices," Nature, Nature, vol. 497(7451), pages 598-602, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Xingdan Sun & Shihao Zhang & Zhiyong Liu & Honglei Zhu & Jinqiang Huang & Kai Yuan & Zhenhua Wang & Kenji Watanabe & Takashi Taniguchi & Xiaoxi Li & Mengjian Zhu & Jinhai Mao & Teng Yang & Jun Kang & , 2021. "Correlated states in doubly-aligned hBN/graphene/hBN heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Mohit Kumar Jat & Priya Tiwari & Robin Bajaj & Ishita Shitut & Shinjan Mandal & Kenji Watanabe & Takashi Taniguchi & H. R. Krishnamurthy & Manish Jain & Aveek Bid, 2024. "Higher order gaps in the renormalized band structure of doubly aligned hBN/bilayer graphene moiré superlattice," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yufei Sun & Yujia Wang & Enze Wang & Bolun Wang & Hengyi Zhao & Yongpan Zeng & Qinghua Zhang & Yonghuang Wu & Lin Gu & Xiaoyan Li & Kai Liu, 2022. "Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Veronica R. Policht & Henry Mittenzwey & Oleg Dogadov & Manuel Katzer & Andrea Villa & Qiuyang Li & Benjamin Kaiser & Aaron M. Ross & Francesco Scotognella & Xiaoyang Zhu & Andreas Knorr & Malte Selig, 2023. "Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    12. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Ruoming Peng & Adina Ripin & Yusen Ye & Jiayi Zhu & Changming Wu & Seokhyeong Lee & Huan Li & Takashi Taniguchi & Kenji Watanabe & Ting Cao & Xiaodong Xu & Mo Li, 2022. "Long-range transport of 2D excitons with acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Si, Nan & Guan, Yin-Yan & Gao, Wei-Chun & Guo, An-Bang & Zhang, Yan-Li & Jiang, Wei, 2022. "Ferrimagnetism and reentrant behavior in a coronene-like superlattice with double-layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. Hao Chen & Arpit Arora & Justin C. W. Song & Kian Ping Loh, 2023. "Gate-tunable anomalous Hall effect in Bernal tetralayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    16. Hulin Yao & Pengcheng Zheng & Shibin Zhang & Chuanjie Hu & Xiaoli Fang & Liping Zhang & Dan Ling & Huanyang Chen & Xin Ou, 2024. "Twist piezoelectricity: giant electromechanical coupling in magic-angle twisted bilayer LiNbO3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
    18. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Richen Xiong & Samuel L. Brantly & Kaixiang Su & Jacob H. Nie & Zihan Zhang & Rounak Banerjee & Hayley Ruddick & Kenji Watanabe & Takashi Taniguchi & Seth Ariel Tongay & Cenke Xu & Chenhao Jin, 2024. "Tunable exciton valley-pseudospin orders in moiré superlattices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Martin Claassen & Lede Xian & Dante M. Kennes & Angel Rubio, 2022. "Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32508-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.