IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42837-8.html
   My bibliography  Save this article

Gli1 marks a sentinel muscle stem cell population for muscle regeneration

Author

Listed:
  • Jiayin Peng

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Lili Han

    (University of Chinese Academy of Sciences)

  • Biao Liu

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Jiawen Song

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Yuang Wang

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Kunpeng Wang

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences
    ShanghaiTech University)

  • Qian Guo

    (University of Chinese Academy of Sciences)

  • XinYan Liu

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Yu Li

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Jujin Zhang

    (University of Chinese Academy of Sciences)

  • Wenqing Wu

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences)

  • Sheng Li

    (Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine)

  • Xin Fu

    (Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine)

  • Cheng-le Zhuang

    (The 10th People’s Hospital affiliated to Tongji University)

  • Weikang Zhang

    (Guangzhou Laboratory-Guangzhou Medical University
    Huazhong University of Science and Technology)

  • Shengbao Suo

    (Guangzhou Laboratory-Guangzhou Medical University
    The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease)

  • Ping Hu

    (Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine
    The 10th People’s Hospital affiliated to Tongji University
    Guangzhou Laboratory-Guangzhou Medical University
    The Fifth Affiliated Hospital of Guangzhou Medical University)

  • Yun Zhao

    (Chinese Academy of Sciences, University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    ShanghaiTech University)

Abstract

Adult skeletal muscle regeneration is mainly driven by muscle stem cells (MuSCs), which are highly heterogeneous. Although recent studies have started to characterize the heterogeneity of MuSCs, whether a subset of cells with distinct exists within MuSCs remains unanswered. Here, we find that a population of MuSCs, marked by Gli1 expression, is required for muscle regeneration. The Gli1+ MuSC population displays advantages in proliferation and differentiation both in vitro and in vivo. Depletion of this population leads to delayed muscle regeneration, while transplanted Gli1+ MuSCs support muscle regeneration more effectively than Gli1− MuSCs. Further analysis reveals that even in the uninjured muscle, Gli1+ MuSCs have elevated mTOR signaling activity, increased cell size and mitochondrial numbers compared to Gli1− MuSCs, indicating Gli1+ MuSCs are displaying the features of primed MuSCs. Moreover, Gli1+ MuSCs greatly contribute to the formation of GAlert cells after muscle injury. Collectively, our findings demonstrate that Gli1+ MuSCs represents a distinct MuSC population which is more active in the homeostatic muscle and enters the cell cycle shortly after injury. This population functions as the tissue-resident sentinel that rapidly responds to injury and initiates muscle regeneration.

Suggested Citation

  • Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42837-8
    DOI: 10.1038/s41467-023-42837-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42837-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42837-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph T. Rodgers & Katherine Y. King & Jamie O. Brett & Melinda J. Cromie & Gregory W. Charville & Katie K. Maguire & Christopher Brunson & Namrata Mastey & Ling Liu & Chang-Ru Tsai & Margaret A. Goo, 2014. "mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert," Nature, Nature, vol. 510(7505), pages 393-396, June.
    2. Adelaida R. Palla & Keren I. Hilgendorf & Ann V. Yang & Jaclyn P. Kerr & Aaron C. Hinken & Janos Demeter & Peggy Kraft & Nancie A. Mooney & Nora Yucel & David M. Burns & Yu Xin Wang & Peter K. Jackson, 2022. "Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. F. Relaix & M. Bencze & M. J. Borok & A. Vartanian & F. Gattazzo & D. Mademtzoglou & S. Perez-Diaz & A. Prola & P. C. Reyes-Fernandez & A. Rotini & Taglietti, 2021. "Perspectives on skeletal muscle stem cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Alessandra M. Norris & Ambili Bai Appu & Connor D. Johnson & Lylybell Y. Zhou & David W. McKellar & Marie-Ange Renault & David Hammers & Benjamin D. Cosgrove & Daniel Kopinke, 2023. "Hedgehog signaling via its ligand DHH acts as cell fate determinant during skeletal muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Caroline E. Brun & Marie-Claude Sincennes & Alexander Y. T. Lin & Derek Hall & William Jarassier & Peter Feige & Fabien Le Grand & Michael A. Rudnicki, 2022. "GLI3 regulates muscle stem cell entry into GAlert and self-renewal," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandra M. Norris & Ambili Bai Appu & Connor D. Johnson & Lylybell Y. Zhou & David W. McKellar & Marie-Ange Renault & David Hammers & Benjamin D. Cosgrove & Daniel Kopinke, 2023. "Hedgehog signaling via its ligand DHH acts as cell fate determinant during skeletal muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Hao A. Duong & Kenkichi Baba & Jason P. DeBruyne & Alec J. Davidson & Christopher Ehlen & Michael Powell & Gianluca Tosini, 2024. "Environmental circadian disruption re-writes liver circadian proteomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Ramachandran Prakasam & Angela Bonadiman & Roberta Andreotti & Emanuela Zuccaro & Davide Dalfovo & Caterina Marchioretti & Debasmita Tripathy & Gianluca Petris & Eric N. Anderson & Alice Migazzi & Lau, 2023. "LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Li Guo & Cheng Hu & Yang Liu & Xiaoyu Chen & Deli Song & Runling Shen & Zhanzhen Liu & Xudong Jia & Qinfen Zhang & Yuanzhu Gao & Zhezhi Deng & Tao Zuo & Jun Hu & Wenbo Zhu & Jing Cai & Guangmei Yan & , 2023. "Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    8. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Xiaoyan Wei & Angelos Rigopoulos & Matthias Lienhard & Sophie Pöhle-Kronawitter & Georgios Kotsaris & Julia Franke & Nikolaus Berndt & Joy Orezimena Mejedo & Hao Wu & Stefan Börno & Bernd Timmermann &, 2024. "Neurofibromin 1 controls metabolic balance and Notch-dependent quiescence of murine juvenile myogenic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    12. Elisa Setten & Alessandra Castagna & Josué Manik Nava-Sedeño & Jonathan Weber & Roberta Carriero & Andreas Reppas & Valery Volk & Jessica Schmitz & Wilfried Gwinner & Haralampos Hatzikirou & Friedrich, 2022. "Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    13. Dafne Ibarra-Morales & Michael Rauer & Piergiuseppe Quarato & Leily Rabbani & Fides Zenk & Mariana Schulte-Sasse & Francesco Cardamone & Alejandro Gomez-Auli & Germano Cecere & Nicola Iovino, 2021. "Histone variant H2A.Z regulates zygotic genome activation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    14. Ryuki Shimada & Yuzuru Kato & Naoki Takeda & Sayoko Fujimura & Kei-ichiro Yasunaga & Shingo Usuki & Hitoshi Niwa & Kimi Araki & Kei-ichiro Ishiguro, 2023. "STRA8–RB interaction is required for timely entry of meiosis in mouse female germ cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Xiang He & Daiqin Xiong & Lei Zhao & Jialong Fu & Lingfei Luo, 2024. "Meningeal lymphatic supporting cells govern the formation and maintenance of zebrafish mural lymphatic endothelial cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Guilherme Reis-de-Oliveira & Victor Corasolla Carregari & Gabriel Rodrigues dos Reis de Sousa & Daniel Martins-de-Souza, 2024. "OmicScope unravels systems-level insights from quantitative proteomics data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Maria J. Garcia-Leon & Cristina Liboni & Vincent Mittelheisser & Louis Bochler & Gautier Follain & Clarisse Mouriaux & Ignacio Busnelli & Annabel Larnicol & Florent Colin & Marina Peralta & Naël Osman, 2024. "Platelets favor the outgrowth of established metastases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Ting Zhao & Yan Hong & Bowen Yan & Suming Huang & Guo-li Ming & Hongjun Song, 2024. "Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Hao Chen & Frederick J. King & Bin Zhou & Yu Wang & Carter J. Canedy & Joel Hayashi & Yang Zhong & Max W. Chang & Lars Pache & Julian L. Wong & Yong Jia & John Joslin & Tao Jiang & Christopher Benner , 2024. "Drug target prediction through deep learning functional representation of gene signatures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42837-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.