IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37689-1.html
   My bibliography  Save this article

Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD4-selective WNT surrogate in mice

Author

Listed:
  • Jie Ding

    (Stanford University School of Medicine)

  • Sung-Jin Lee

    (Surrozen, Inc. South San Francisco)

  • Lukas Vlahos

    (Columbia University)

  • Kanako Yuki

    (Stanford University School of Medicine)

  • Cara C. Rada

    (Stanford University School of Medicine)

  • Vincent Unen

    (Stanford University School of Medicine
    Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine)

  • Meghah Vuppalapaty

    (Surrozen, Inc. South San Francisco)

  • Hui Chen

    (Surrozen, Inc. South San Francisco)

  • Asmiti Sura

    (Surrozen, Inc. South San Francisco)

  • Aaron K. McCormick

    (Stanford University School of Medicine)

  • Madeline Tomaske

    (Stanford University School of Medicine)

  • Samira Alwahabi

    (Stanford University School of Medicine)

  • Huy Nguyen

    (Surrozen, Inc. South San Francisco)

  • William Nowatzke

    (Surrozen, Inc. South San Francisco)

  • Lily Kim

    (Stanford University School of Medicine)

  • Lisa Kelly

    (Stanford University School of Medicine)

  • Douglas Vollrath

    (Stanford University School of Medicine)

  • Andrea Califano

    (Columbia University)

  • Wen-Chen Yeh

    (Surrozen, Inc. South San Francisco)

  • Yang Li

    (Surrozen, Inc. South San Francisco)

  • Calvin J. Kuo

    (Stanford University School of Medicine)

Abstract

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer’s disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/β-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.

Suggested Citation

  • Jie Ding & Sung-Jin Lee & Lukas Vlahos & Kanako Yuki & Cara C. Rada & Vincent Unen & Meghah Vuppalapaty & Hui Chen & Asmiti Sura & Aaron K. McCormick & Madeline Tomaske & Samira Alwahabi & Huy Nguyen , 2023. "Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD4-selective WNT surrogate in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37689-1
    DOI: 10.1038/s41467-023-37689-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37689-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37689-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ayal Ben-Zvi & Baptiste Lacoste & Esther Kur & Benjamin J. Andreone & Yoav Mayshar & Han Yan & Chenghua Gu, 2014. "Mfsd2a is critical for the formation and function of the blood–brain barrier," Nature, Nature, vol. 509(7501), pages 507-511, May.
    2. Annika Armulik & Guillem Genové & Maarja Mäe & Maya H. Nisancioglu & Elisabet Wallgard & Colin Niaudet & Liqun He & Jenny Norlin & Per Lindblom & Karin Strittmatter & Bengt R. Johansson & Christer Bet, 2010. "Pericytes regulate the blood–brain barrier," Nature, Nature, vol. 468(7323), pages 557-561, November.
    3. Claudia Y. Janda & Luke T. Dang & Changjiang You & Junlei Chang & Wim de Lau & Zhendong A. Zhong & Kelley S. Yan & Owen Marecic & Dirk Siepe & Xingnan Li & James D. Moody & Bart O. Williams & Hans Cle, 2017. "Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling," Nature, Nature, vol. 545(7653), pages 234-237, May.
    4. Kelley S. Yan & Claudia Y. Janda & Junlei Chang & Grace X. Y. Zheng & Kathryn A. Larkin & Vincent C. Luca & Luis A. Chia & Amanda T. Mah & Arnold Han & Jessica M. Terry & Akifumi Ootani & Kelly Roelf , 2017. "Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal," Nature, Nature, vol. 545(7653), pages 238-242, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Boyé & Luiz Henrique Geraldo & Jessica Furtado & Laurence Pibouin-Fragner & Mathilde Poulet & Doyeun Kim & Bryce Nelson & Yunling Xu & Laurent Jacob & Nawal Maissa & Dritan Agalliu & Lena Claess, 2022. "Endothelial Unc5B controls blood-brain barrier integrity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Xue Fan Wang & Robin Vigouroux & Michal Syonov & Yuriy Baglaenko & Angeliki M. Nikolakopoulou & Dene Ringuette & Horea Rus & Peter V. DiStefano & Suzie Dufour & Alireza P. Shabanzadeh & Seunggi Lee & , 2024. "The liver and muscle secreted HFE2-protein maintains central nervous system blood vessel integrity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Ngee-Soon Lau & Geoffrey McCaughan & Mark Ly & Ken Liu & Michael Crawford & Carlo Pulitano, 2024. "Long-term machine perfusion of human split livers: a new model for regenerative and translational research," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ohman Kwon & Hana Lee & Jaeeun Jung & Ye Seul Son & Sojeong Jeon & Won Dong Yoo & Naeun Son & Kwang Bo Jung & Eunho Choi & In-Chul Lee & Hyung-Jun Kwon & Chuna Kim & Mi-Ok Lee & Hyun-Soo Cho & Dae Soo, 2024. "Chemically-defined and scalable culture system for intestinal stem cells derived from human intestinal organoids," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Christina M. Termini & Amara Pang & Tiancheng Fang & Martina Roos & Vivian Y. Chang & Yurun Zhang & Nicollette J. Setiawan & Lia Signaevskaia & Michelle Li & Mindy M. Kim & Orel Tabibi & Paulina K. Li, 2021. "Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Steven Schepanski & Mattia Chini & Veronika Sternemann & Christopher Urbschat & Kristin Thiele & Ting Sun & Yu Zhao & Mareike Poburski & Anna Woestemeier & Marie-Theres Thieme & Dimitra E. Zazara & Ma, 2022. "Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Airi Jo-Watanabe & Toshiki Inaba & Takahiro Osada & Ryota Hashimoto & Tomohiro Nishizawa & Toshiaki Okuno & Sayoko Ihara & Kazushige Touhara & Nobutaka Hattori & Masatsugu Oh-Hora & Osamu Nureki & Tak, 2024. "Bicarbonate signalling via G protein-coupled receptor regulates ischaemia-reperfusion injury," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Shuhui Wang & Kun Wang & Kangkang Song & Zon Weng Lai & Pengfei Li & Dongying Li & Yajie Sun & Ye Mei & Chen Xu & Maofu Liao, 2024. "Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Xinhong Chen & Damien A. Wolfe & Dhanesh Sivadasan Bindu & Mengying Zhang & Naz Taskin & David Goertsen & Timothy F. Shay & Erin E. Sullivan & Sheng-Fu Huang & Sripriya Ravindra Kumar & Cynthia M. Aro, 2023. "Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Chi Nguyen & Hsiang-Ting Lei & Louis Tung Faat Lai & Marc J. Gallenito & Xuelang Mu & Doreen Matthies & Tamir Gonen, 2023. "Lipid flipping in the omega-3 fatty-acid transporter," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Ryann M. Fame & Peter N. Kalugin & Boryana Petrova & Huixin Xu & Paul A. Soden & Frederick B. Shipley & Neil Dani & Bradford Grant & Aja Pragana & Joshua P. Head & Suhasini Gupta & Morgan L. Shannon &, 2023. "Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Andrée-Anne Berthiaume & Franca Schmid & Stefan Stamenkovic & Vanessa Coelho-Santos & Cara D. Nielson & Bruno Weber & Mark W. Majesky & Andy Y. Shih, 2022. "Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Pengfei Lu & Ping Wang & Bingruo Wu & Yidong Wang & Yang Liu & Wei Cheng & Xuhui Feng & Xinchun Yuan & Miriam M. Atteya & Haleigh Ferro & Yukiko Sugi & Grant Rydquist & Mahdi Esmaily & Jonathan T. But, 2022. "A SOX17-PDGFB signaling axis regulates aortic root development," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Elisabeth Lambert & Ahmad Reza Mehdipour & Alexander Schmidt & Gerhard Hummer & Camilo Perez, 2022. "Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. William A. Mills & AnnaLin M. Woo & Shan Jiang & Joelle Martin & Dayana Surendran & Matthew Bergstresser & Ian F. Kimbrough & Ukpong B. Eyo & Michael V. Sofroniew & Harald Sontheimer, 2022. "Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. James Hillier & Yuguang Zhao & Loic Carrique & Tomas Malinauskas & Reinis R. Ruza & Tao-Hsin Chang & Gangshun Yi & Helen M. E. Duyvesteyn & Jing Yu & Weixian Lu & Els Pardon & Jan Steyaert & Yanan Zhu, 2024. "Structural insights into Frizzled3 through nanobody modulators," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37689-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.