IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37477-x.html
   My bibliography  Save this article

Explainable multi-task learning for multi-modality biological data analysis

Author

Listed:
  • Xin Tang

    (Harvard University
    Broad Institute of MIT and Harvard)

  • Jiawei Zhang

    (University of Minnesota Twin Cities)

  • Yichun He

    (Harvard University
    Broad Institute of MIT and Harvard)

  • Xinhe Zhang

    (Harvard University)

  • Zuwan Lin

    (Harvard University)

  • Sebastian Partarrieu

    (Harvard University)

  • Emma Bou Hanna

    (Harvard University)

  • Zhaolin Ren

    (Harvard University)

  • Hao Shen

    (Harvard University)

  • Yuhong Yang

    (University of Minnesota Twin Cities)

  • Xiao Wang

    (Broad Institute of MIT and Harvard
    MIT)

  • Na Li

    (Harvard University)

  • Jie Ding

    (University of Minnesota Twin Cities)

  • Jia Liu

    (Harvard University)

Abstract

Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities.

Suggested Citation

  • Xin Tang & Jiawei Zhang & Yichun He & Xinhe Zhang & Zuwan Lin & Sebastian Partarrieu & Emma Bou Hanna & Zhaolin Ren & Hao Shen & Yuhong Yang & Xiao Wang & Na Li & Jie Ding & Jia Liu, 2023. "Explainable multi-task learning for multi-modality biological data analysis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37477-x
    DOI: 10.1038/s41467-023-37477-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37477-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37477-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yichun He & Xin Tang & Jiahao Huang & Jingyi Ren & Haowen Zhou & Kevin Chen & Albert Liu & Hailing Shi & Zuwan Lin & Qiang Li & Abhishek Aditham & Johain Ounadjela & Emanuelle I. Grody & Jian Shu & Ji, 2021. "ClusterMap for multi-scale clustering analysis of spatial gene expression," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Robrecht Cannoodt & Wouter Saelens & Louise Deconinck & Yvan Saeys, 2021. "Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Karren Dai Yang & Anastasiya Belyaeva & Saradha Venkatachalapathy & Karthik Damodaran & Abigail Katcoff & Adityanarayanan Radhakrishnan & G. V. Shivashankar & Caroline Uhler, 2021. "Multi-domain translation between single-cell imaging and sequencing data using autoencoders," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichuan Cao & Xiamiao Zhao & Songming Tang & Qun Jiang & Sijie Li & Siyu Li & Shengquan Chen, 2024. "scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Yuzhou Chang & Jixin Liu & Yi Jiang & Anjun Ma & Yao Yu Yeo & Qi Guo & Megan McNutt & Jordan E. Krull & Scott J. Rodig & Dan H. Barouch & Garry P. Nolan & Dong Xu & Sizun Jiang & Zihai Li & Bingqiang , 2024. "Graph Fourier transform for spatial omics representation and analyses of complex organs," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethan Bahl & Snehajyoti Chatterjee & Utsav Mukherjee & Muhammad Elsadany & Yann Vanrobaeys & Li-Chun Lin & Miriam McDonough & Jon Resch & K. Peter Giese & Ted Abel & Jacob J. Michaelson, 2024. "Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Yang Xu & Rachel Patton McCord, 2022. "Diagonal integration of multimodal single-cell data: potential pitfalls and paths forward," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    6. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Yichuan Cao & Xiamiao Zhao & Songming Tang & Qun Jiang & Sijie Li & Siyu Li & Shengquan Chen, 2024. "scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Kangning Dong & Shihua Zhang, 2022. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. John Arevalo & Ellen Su & Jessica D. Ewald & Robert Dijk & Anne E. Carpenter & Shantanu Singh, 2024. "Evaluating batch correction methods for image-based cell profiling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Chunman Zuo & Yijian Zhang & Chen Cao & Jinwang Feng & Mingqi Jiao & Luonan Chen, 2022. "Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Yue Cao & Pengyi Yang & Jean Yee Hwa Yang, 2021. "A benchmark study of simulation methods for single-cell RNA sequencing data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Jing Qi & Yang Zhou & Zicen Zhao & Shuilin Jin, 2021. "SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-20, June.
    15. Zhijian Li & Christoph Kuppe & Susanne Ziegler & Mingbo Cheng & Nazanin Kabgani & Sylvia Menzel & Martin Zenke & Rafael Kramann & Ivan G. Costa, 2021. "Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    16. George C. Linderman & Jun Zhao & Manolis Roulis & Piotr Bielecki & Richard A. Flavell & Boaz Nadler & Yuval Kluger, 2022. "Zero-preserving imputation of single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    18. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    19. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Vidhya M. Ravi & Nicolas Neidert & Paulina Will & Kevin Joseph & Julian P. Maier & Jan Kückelhaus & Lea Vollmer & Jonathan M. Goeldner & Simon P. Behringer & Florian Scherer & Melanie Boerries & Marie, 2022. "T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37477-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.