IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35233-1.html
   My bibliography  Save this article

Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease

Author

Listed:
  • Xinyi Zhang

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • Xiao Wang

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • G. V. Shivashankar

    (ETH Zurich
    Paul Scherrer Institute)

  • Caroline Uhler

    (Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

Abstract

Tissue development and disease lead to changes in cellular organization, nuclear morphology, and gene expression, which can be jointly measured by spatial transcriptomic technologies. However, methods for jointly analyzing the different spatial data modalities in 3D are still lacking. We present a computational framework to integrate Spatial Transcriptomic data using over-parameterized graph-based Autoencoders with Chromatin Imaging data (STACI) to identify molecular and functional alterations in tissues. STACI incorporates multiple modalities in a single representation for downstream tasks, enables the prediction of spatial transcriptomic data from nuclear images in unseen tissue sections, and provides built-in batch correction of gene expression and tissue morphology through over-parameterization. We apply STACI to analyze the spatio-temporal progression of Alzheimer’s disease and identify the associated nuclear morphometric and coupled gene expression features. Collectively, we demonstrate the importance of characterizing disease progression by integrating multiple data modalities and its potential for the discovery of disease biomarkers.

Suggested Citation

  • Xinyi Zhang & Xiao Wang & G. V. Shivashankar & Caroline Uhler, 2022. "Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35233-1
    DOI: 10.1038/s41467-022-35233-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35233-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35233-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ed S. Lein & Michael J. Hawrylycz & Nancy Ao & Mikael Ayres & Amy Bensinger & Amy Bernard & Andrew F. Boe & Mark S. Boguski & Kevin S. Brockway & Emi J. Byrnes & Lin Chen & Li Chen & Tsuey-Ming Chen &, 2007. "Genome-wide atlas of gene expression in the adult mouse brain," Nature, Nature, vol. 445(7124), pages 168-176, January.
    2. Karren Dai Yang & Karthik Damodaran & Saradha Venkatachalapathy & Ali C Soylemezoglu & G V Shivashankar & Caroline Uhler, 2020. "Predicting cell lineages using autoencoders and optimal transport," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-20, April.
    3. Jiarui Ding & Aviv Regev, 2021. "Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Zhang & Saradha Venkatachalapathy & Daniel Paysan & Paulina Schaerer & Claudio Tripodo & Caroline Uhler & G. V. Shivashankar, 2024. "Unsupervised representation learning of chromatin images identifies changes in cell state and tissue organization in DCIS," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Bohan Li & Feng Bao & Yimin Hou & Fengji Li & Hongjue Li & Yue Deng & Qionghai Dai, 2024. "Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Shijia Zhu & Naoto Kubota & Shidan Wang & Tao Wang & Guanghua Xiao & Yujin Hoshida, 2024. "STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Juexin Wang & Jinpu Li & Skyler T. Kramer & Li Su & Yuzhou Chang & Chunhui Xu & Michael T. Eadon & Krzysztof Kiryluk & Qin Ma & Dong Xu, 2023. "Dimension-agnostic and granularity-based spatially variable gene identification using BSP," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Brendan F. Miller & Feiyang Huang & Lyla Atta & Arpan Sahoo & Jean Fan, 2022. "Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Yingfeng Tao & Xiaoliu Zhou & Leqiang Sun & Da Lin & Huaiyuan Cai & Xi Chen & Wei Zhou & Bing Yang & Zhe Hu & Jing Yu & Jing Zhang & Xiaoqing Yang & Fang Yang & Bang Shen & Wenbao Qi & Zhenfang Fu & J, 2023. "Highly efficient and robust π-FISH rainbow for multiplexed in situ detection of diverse biomolecules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Ethan Bahl & Snehajyoti Chatterjee & Utsav Mukherjee & Muhammad Elsadany & Yann Vanrobaeys & Li-Chun Lin & Miriam McDonough & Jon Resch & K. Peter Giese & Ted Abel & Jacob J. Michaelson, 2024. "Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Léa J. Becker & Clémentine Fillinger & Robin Waegaert & Sarah H. Journée & Pierre Hener & Beyza Ayazgok & Muris Humo & Meltem Karatas & Maxime Thouaye & Mithil Gaikwad & Laetitia Degiorgis & Marie des, 2023. "The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    19. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Zixiang Zhou & Yunshan Zhong & Zemin Zhang & Xianwen Ren, 2023. "Spatial transcriptomics deconvolution at single-cell resolution using Redeconve," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35233-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.