IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35094-8.html
   My bibliography  Save this article

A unified computational framework for single-cell data integration with optimal transport

Author

Listed:
  • Kai Cao

    (LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
    School of Mathematical Sciences, University of Chinese Academy of Sciences)

  • Qiyu Gong

    (Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine)

  • Yiguang Hong

    (Tongji University)

  • Lin Wan

    (LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
    School of Mathematical Sciences, University of Chinese Academy of Sciences)

Abstract

Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well as spatially resolved transcriptomic data remains a major challenge. Here we introduce uniPort, a unified single-cell data integration framework that combines a coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common and dataset-specific genes for integration to handle the heterogeneity across datasets, and it is scalable to large-scale datasets. uniPort jointly embeds heterogeneous single-cell multi-omics datasets into a shared latent space. It can further construct a reference atlas for gene imputation across datasets. Meanwhile, uniPort provides a flexible label transfer framework to deconvolute heterogeneous spatial transcriptomic data using an optimal transport plan, instead of embedding latent space. We demonstrate the capability of uniPort by applying it to integrate a variety of datasets, including single-cell transcriptomics, chromatin accessibility, and spatially resolved transcriptomic data.

Suggested Citation

  • Kai Cao & Qiyu Gong & Yiguang Hong & Lin Wan, 2022. "A unified computational framework for single-cell data integration with optimal transport," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35094-8
    DOI: 10.1038/s41467-022-35094-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35094-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35094-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longqi Liu & Chuanyu Liu & Andrés Quintero & Liang Wu & Yue Yuan & Mingyue Wang & Mengnan Cheng & Lizhi Leng & Liqin Xu & Guoyi Dong & Rui Li & Yang Liu & Xiaoyu Wei & Jiangshan Xu & Xiaowei Chen & Ha, 2019. "Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Karren Dai Yang & Anastasiya Belyaeva & Saradha Venkatachalapathy & Karthik Damodaran & Abigail Katcoff & Adityanarayanan Radhakrishnan & G. V. Shivashankar & Caroline Uhler, 2021. "Multi-domain translation between single-cell imaging and sequencing data using autoencoders," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Rongxin Fang & Sebastian Preissl & Yang Li & Xiaomeng Hou & Jacinta Lucero & Xinxin Wang & Amir Motamedi & Andrew K. Shiau & Xinzhu Zhou & Fangming Xie & Eran A. Mukamel & Kai Zhang & Yanxiao Zhang & , 2021. "Comprehensive analysis of single cell ATAC-seq data with SnapATAC," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Mor Nitzan & Nikos Karaiskos & Nir Friedman & Nikolaus Rajewsky, 2019. "Gene expression cartography," Nature, Nature, vol. 576(7785), pages 132-137, December.
    5. Alma Andersson & Ludvig Larsson & Linnea Stenbeck & Fredrik Salmén & Anna Ehinger & Sunny Z. Wu & Ghamdan Al-Eryani & Daniel Roden & Alex Swarbrick & Åke Borg & Jonas Frisén & Camilla Engblom & Joakim, 2021. "Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Wanwen Zeng & Xi Chen & Zhana Duren & Yong Wang & Rui Jiang & Wing Hung Wong, 2019. "DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Xi Chen & Ricardo J. Miragaia & Kedar Nath Natarajan & Sarah A. Teichmann, 2018. "A rapid and robust method for single cell chromatin accessibility profiling," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    8. Lei Xiong & Kang Tian & Yuzhe Li & Weixi Ning & Xin Gao & Qiangfeng Cliff Zhang, 2022. "Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jules Samaran & Gabriel Peyré & Laura Cantini, 2024. "scConfluence: single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Yichuan Cao & Xiamiao Zhao & Songming Tang & Qun Jiang & Sijie Li & Siyu Li & Shengquan Chen, 2024. "scButterfly: a versatile single-cell cross-modality translation method via dual-aligned variational autoencoders," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Honglei Ren & Benjamin L. Walker & Zixuan Cang & Qing Nie, 2022. "Identifying multicellular spatiotemporal organization of cells with SpaceFlow," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Chenglong Sun & Anqiang Wang & Yanhe Zhou & Panpan Chen & Xiangyi Wang & Jianpeng Huang & Jiamin Gao & Xiao Wang & Liebo Shu & Jiawei Lu & Wentao Dai & Zhaode Bu & Jiafu Ji & Jiuming He, 2023. "Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Seong Kyu Han & Michelle T. McNulty & Christopher J. Benway & Pei Wen & Anya Greenberg & Ana C. Onuchic-Whitford & Dongkeun Jang & Jason Flannick & Noël P. Burtt & Parker C. Wilson & Benjamin D. Humph, 2023. "Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Maria Stahl Madsen & Marjoleine F. Broekema & Martin Rønn Madsen & Arjen Koppen & Anouska Borgman & Cathrin Gräwe & Elisabeth G. K. Thomsen & Denise Westland & Mariette E. G. Kranendonk & Marian Groot, 2022. "PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Akshaya Ramakrishnan & Aikaterini Symeonidi & Patrick Hanel & Katharina T. Schmid & Maria L. Richter & Michael Schubert & Maria Colomé-Tatché, 2023. "epiAneufinder identifies copy number alterations from single-cell ATAC-seq data," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Xin Tang & Jiawei Zhang & Yichun He & Xinhe Zhang & Zuwan Lin & Sebastian Partarrieu & Emma Bou Hanna & Zhaolin Ren & Hao Shen & Yuhong Yang & Xiao Wang & Na Li & Jie Ding & Jia Liu, 2023. "Explainable multi-task learning for multi-modality biological data analysis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    19. Zhiyuan Liu & Dafei Wu & Weiwei Zhai & Liang Ma, 2023. "SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Sudha Sunil Rajderkar & Kitt Paraiso & Maria Luisa Amaral & Michael Kosicki & Laura E. Cook & Fabrice Darbellay & Cailyn H. Spurrell & Marco Osterwalder & Yiwen Zhu & Han Wu & Sarah Yasmeen Afzal & Ma, 2024. "Dynamic enhancer landscapes in human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35094-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.