IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30545-8.html
   My bibliography  Save this article

Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning

Author

Listed:
  • Andrea Riba

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Attila Oravecz

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Matej Durik

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Sara Jiménez

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Violaine Alunni

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Marie Cerciat

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Matthieu Jung

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Céline Keime

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • William M. Keyes

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

  • Nacho Molina

    (Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258)

Abstract

Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative understanding of gene regulation dynamics throughout the cell cycle is far from complete. Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell systems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related genes. Since existing methods to analyze scRNA-seq are not efficient to measure cycling gene dynamics, we propose a deep learning approach (DeepCycle) to fit these patterns and build a high-resolution map of the entire cell cycle transcriptome. Characterizing the cell cycle in embryonic and somatic cells, we identify major waves of transcription during the G1 phase and systematically study the stages of the cell cycle. Our work will facilitate the study of the cell cycle in multiple cellular models and different biological contexts.

Suggested Citation

  • Andrea Riba & Attila Oravecz & Matej Durik & Sara Jiménez & Violaine Alunni & Marie Cerciat & Matthieu Jung & Céline Keime & William M. Keyes & Nacho Molina, 2022. "Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30545-8
    DOI: 10.1038/s41467-022-30545-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30545-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30545-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zehua Liu & Huazhe Lou & Kaikun Xie & Hao Wang & Ning Chen & Oscar M. Aparicio & Michael Q. Zhang & Rui Jiang & Ting Chen, 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    3. Yifan Zhao & Huiyu Cai & Zuobai Zhang & Jian Tang & Yue Li, 2021. "Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Hee Won Yang & Mingyu Chung & Takamasa Kudo & Tobias Meyer, 2017. "Competing memories of mitogen and p53 signalling control cell-cycle entry," Nature, Nature, vol. 549(7672), pages 404-408, September.
    5. Shih-Yin Tsai & Rene Opavsky & Nidhi Sharma & Lizhao Wu & Shan Naidu & Eric Nolan & Enrique Feria-Arias & Cynthia Timmers & Jana Opavska & Alain de Bruin & Jean-Leon Chong & Prashant Trikha & Soledad , 2008. "Mouse development with a single E2F activator," Nature, Nature, vol. 454(7208), pages 1137-1141, August.
    6. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    7. Mahé Raccaud & Elias T. Friman & Andrea B. Alber & Harsha Agarwal & Cédric Deluz & Timo Kuhn & J. Christof M. Gebhardt & David M. Suter, 2019. "Mitotic chromosome binding predicts transcription factor properties in interphase," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    8. Shaoheng Liang & Fang Wang & Jincheng Han & Ken Chen, 2020. "Latent periodic process inference from single-cell RNA-seq data," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    9. Jiarui Ding & Anne Condon & Sohrab P. Shah, 2018. "Interpretable dimensionality reduction of single cell transcriptome data with deep generative models," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    10. Yifan Zhao & Huiyu Cai & Zuobai Zhang & Jian Tang & Yue Li, 2021. "Publisher Correction: Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiachen Li & Xiaoyong Pan & Ye Yuan & Hong-Bin Shen, 2024. "TFvelo: gene regulation inspired RNA velocity estimation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Chen & Frederick J. King & Bin Zhou & Yu Wang & Carter J. Canedy & Joel Hayashi & Yang Zhong & Max W. Chang & Lars Pache & Julian L. Wong & Yong Jia & John Joslin & Tao Jiang & Christopher Benner , 2024. "Drug target prediction through deep learning functional representation of gene signatures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Xiang Lin & Tian Tian & Zhi Wei & Hakon Hakonarson, 2022. "Clustering of single-cell multi-omics data with a multimodal deep learning method," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Benjamin J. Auerbach & Garret A. FitzGerald & Mingyao Li, 2022. "Tempo: an unsupervised Bayesian algorithm for circadian phase inference in single-cell transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yichi Niu & Jiayi Luo & Chenghang Zong, 2024. "Single-cell total-RNA profiling unveils regulatory hubs of transcription factors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Vidhya M. Ravi & Nicolas Neidert & Paulina Will & Kevin Joseph & Julian P. Maier & Jan Kückelhaus & Lea Vollmer & Jonathan M. Goeldner & Simon P. Behringer & Florian Scherer & Melanie Boerries & Marie, 2022. "T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Jinhee Park & Hyerin Kim & Jaekwang Kim & Mookyung Cheon, 2020. "A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-20, July.
    8. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    10. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Ethan Bahl & Snehajyoti Chatterjee & Utsav Mukherjee & Muhammad Elsadany & Yann Vanrobaeys & Li-Chun Lin & Miriam McDonough & Jon Resch & K. Peter Giese & Ted Abel & Jacob J. Michaelson, 2024. "Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. David G. Priest & Takeshi Ebihara & Janyerkye Tulyeu & Jonas N. Søndergaard & Shuhei Sakakibara & Fuminori Sugihara & Shunichiro Nakao & Yuki Togami & Jumpei Yoshimura & Hiroshi Ito & Shinya Onishi & , 2024. "Atypical and non-classical CD45RBlo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Fabian Peisker & Maurice Halder & James Nagai & Susanne Ziegler & Nadine Kaesler & Konrad Hoeft & Ronghui Li & Eric M. J. Bindels & Christoph Kuppe & Julia Moellmann & Michael Lehrke & Christian Stopp, 2022. "Mapping the cardiac vascular niche in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    19. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    20. Yan Tang & David J. Kwiatkowski & Elizabeth P. Henske, 2022. "Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30545-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.