IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35031-9.html
   My bibliography  Save this article

Clustering of single-cell multi-omics data with a multimodal deep learning method

Author

Listed:
  • Xiang Lin

    (New Jersey Institute of Technology)

  • Tian Tian

    (Children’s Hospital of Philadelphia)

  • Zhi Wei

    (New Jersey Institute of Technology)

  • Hakon Hakonarson

    (Children’s Hospital of Philadelphia
    University of Pennsylvania)

Abstract

Single-cell multimodal sequencing technologies are developed to simultaneously profile different modalities of data in the same cell. It provides a unique opportunity to jointly analyze multimodal data at the single-cell level for the identification of distinct cell types. A correct clustering result is essential for the downstream complex biological functional studies. However, combining different data sources for clustering analysis of single-cell multimodal data remains a statistical and computational challenge. Here, we develop a novel multimodal deep learning method, scMDC, for single-cell multi-omics data clustering analysis. scMDC is an end-to-end deep model that explicitly characterizes different data sources and jointly learns latent features of deep embedding for clustering analysis. Extensive simulation and real-data experiments reveal that scMDC outperforms existing single-cell single-modal and multimodal clustering methods on different single-cell multimodal datasets. The linear scalability of running time makes scMDC a promising method for analyzing large multimodal datasets.

Suggested Citation

  • Xiang Lin & Tian Tian & Zhi Wei & Hakon Hakonarson, 2022. "Clustering of single-cell multi-omics data with a multimodal deep learning method," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35031-9
    DOI: 10.1038/s41467-022-35031-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35031-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35031-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Tian Tian & Jie Zhang & Xiang Lin & Zhi Wei & Hakon Hakonarson, 2021. "Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Jason D. Buenrostro & Beijing Wu & Ulrike M. Litzenburger & Dave Ruff & Michael L. Gonzales & Michael P. Snyder & Howard Y. Chang & William J. Greenleaf, 2015. "Single-cell chromatin accessibility reveals principles of regulatory variation," Nature, Nature, vol. 523(7561), pages 486-490, July.
    4. Jiarui Ding & Anne Condon & Sohrab P. Shah, 2018. "Interpretable dimensionality reduction of single cell transcriptome data with deep generative models," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    5. Xiuwei Zhang & Chenling Xu & Nir Yosef, 2019. "Simulating multiple faceted variability in single cell RNA sequencing," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    6. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongru Hu & Gerald Quon, 2024. "scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songming Tang & Xuejian Cui & Rongxiang Wang & Sijie Li & Siyu Li & Xin Huang & Shengquan Chen, 2024. "scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Zhijian Li & Christoph Kuppe & Susanne Ziegler & Mingbo Cheng & Nazanin Kabgani & Sylvia Menzel & Martin Zenke & Rafael Kramann & Ivan G. Costa, 2021. "Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    6. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Andrea Riba & Attila Oravecz & Matej Durik & Sara Jiménez & Violaine Alunni & Marie Cerciat & Matthieu Jung & Céline Keime & William M. Keyes & Nacho Molina, 2022. "Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Lei Xiong & Kang Tian & Yuzhe Li & Weixi Ning & Xin Gao & Qiangfeng Cliff Zhang, 2022. "Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Jinhee Park & Hyerin Kim & Jaekwang Kim & Mookyung Cheon, 2020. "A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-20, July.
    11. Hui Li & Cory R. Brouwer & Weijun Luo, 2022. "A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Nazila Zarghi, 2021. "Evidence-Based Social Sciences: A New Emerging Field," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, January -.
    13. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    14. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    15. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    16. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    17. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    18. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    19. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    20. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35031-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.