IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26044-x.html
   My bibliography  Save this article

ClusterMap for multi-scale clustering analysis of spatial gene expression

Author

Listed:
  • Yichun He

    (Harvard University
    Broad Institute of MIT and Harvard)

  • Xin Tang

    (Harvard University
    Broad Institute of MIT and Harvard)

  • Jiahao Huang

    (Broad Institute of MIT and Harvard)

  • Jingyi Ren

    (Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology)

  • Haowen Zhou

    (Broad Institute of MIT and Harvard)

  • Kevin Chen

    (Harvard University)

  • Albert Liu

    (Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology)

  • Hailing Shi

    (Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology)

  • Zuwan Lin

    (Broad Institute of MIT and Harvard
    Harvard University)

  • Qiang Li

    (Harvard University)

  • Abhishek Aditham

    (Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology)

  • Johain Ounadjela

    (Broad Institute of MIT and Harvard
    Whitehead Institute for Biomedical Research)

  • Emanuelle I. Grody

    (Broad Institute of MIT and Harvard
    Whitehead Institute for Biomedical Research)

  • Jian Shu

    (Broad Institute of MIT and Harvard
    Whitehead Institute for Biomedical Research
    Massachusetts General Hospital, Harvard Medical School)

  • Jia Liu

    (Harvard University)

  • Xiao Wang

    (Broad Institute of MIT and Harvard
    Massachusetts Institute of Technology)

Abstract

Quantifying RNAs in their spatial context is crucial to understanding gene expression and regulation in complex tissues. In situ transcriptomic methods generate spatially resolved RNA profiles in intact tissues. However, there is a lack of a unified computational framework for integrative analysis of in situ transcriptomic data. Here, we introduce an unsupervised and annotation-free framework, termed ClusterMap, which incorporates the physical location and gene identity of RNAs, formulates the task as a point pattern analysis problem, and identifies biologically meaningful structures by density peak clustering (DPC). Specifically, ClusterMap precisely clusters RNAs into subcellular structures, cell bodies, and tissue regions in both two- and three-dimensional space, and performs consistently on diverse tissue types, including mouse brain, placenta, gut, and human cardiac organoids. We demonstrate ClusterMap to be broadly applicable to various in situ transcriptomic measurements to uncover gene expression patterns, cell niche, and tissue organization principles from images with high-dimensional transcriptomic profiles.

Suggested Citation

  • Yichun He & Xin Tang & Jiahao Huang & Jingyi Ren & Haowen Zhou & Kevin Chen & Albert Liu & Hailing Shi & Zuwan Lin & Qiang Li & Abhishek Aditham & Johain Ounadjela & Emanuelle I. Grody & Jian Shu & Ji, 2021. "ClusterMap for multi-scale clustering analysis of spatial gene expression," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26044-x
    DOI: 10.1038/s41467-021-26044-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26044-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26044-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeongbin Park & Wonyl Choi & Sebastian Tiesmeyer & Brian Long & Lars E. Borm & Emma Garren & Thuc Nghi Nguyen & Bosiljka Tasic & Simone Codeluppi & Tobias Graf & Matthias Schlesner & Oliver Stegle & R, 2021. "Cell segmentation-free inference of cell types from in situ transcriptomics data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Jeongbin Park & Wonyl Choi & Sebastian Tiesmeyer & Brian Long & Lars E. Borm & Emma Garren & Thuc Nghi Nguyen & Bosiljka Tasic & Simone Codeluppi & Tobias Graf & Matthias Schlesner & Oliver Stegle & R, 2021. "Author Correction: Cell segmentation-free inference of cell types from in situ transcriptomics data," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    3. Mor Nitzan & Nikos Karaiskos & Nir Friedman & Nikolaus Rajewsky, 2019. "Gene expression cartography," Nature, Nature, vol. 576(7785), pages 132-137, December.
    4. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunman Zuo & Yijian Zhang & Chen Cao & Jinwang Feng & Mingqi Jiao & Luonan Chen, 2022. "Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Kangning Dong & Shihua Zhang, 2022. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xin Tang & Jiawei Zhang & Yichun He & Xinhe Zhang & Zuwan Lin & Sebastian Partarrieu & Emma Bou Hanna & Zhaolin Ren & Hao Shen & Yuhong Yang & Xiao Wang & Na Li & Jie Ding & Jia Liu, 2023. "Explainable multi-task learning for multi-modality biological data analysis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Xiaohang Fu & Yingxin Lin & David M. Lin & Daniel Mechtersheimer & Chuhan Wang & Farhan Ameen & Shila Ghazanfar & Ellis Patrick & Jinman Kim & Jean Y. H. Yang, 2024. "BIDCell: Biologically-informed self-supervised learning for segmentation of subcellular spatial transcriptomics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyang Tang & Zuotian Li & Tieying Hou & Tonglin Zhang & Baijian Yang & Jing Su & Qianqian Song, 2023. "SiGra: single-cell spatial elucidation through an image-augmented graph transformer," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Wenyi Yang & Pingping Wang & Shouping Xu & Tao Wang & Meng Luo & Yideng Cai & Chang Xu & Guangfu Xue & Jinhao Que & Qian Ding & Xiyun Jin & Yuexin Yang & Fenglan Pang & Boran Pang & Yi Lin & Huan Nie , 2024. "Deciphering cell–cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Zixiang Zhou & Yunshan Zhong & Zemin Zhang & Xianwen Ren, 2023. "Spatial transcriptomics deconvolution at single-cell resolution using Redeconve," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Misa Minegishi & Takahiro Kuchimaru & Kaori Nishikawa & Takayuki Isagawa & Satoshi Iwano & Kei Iida & Hiromasa Hara & Shizuka Miura & Marika Sato & Shigeaki Watanabe & Akifumi Shiomi & Yo Mabuchi & Hi, 2023. "Secretory GFP reconstitution labeling of neighboring cells interrogates cell–cell interactions in metastatic niches," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Arpiar Saunders & Kee Wui Huang & Cassandra Vondrak & Christina Hughes & Karina Smolyar & Harsha Sen & Adrienne C. Philson & James Nemesh & Alec Wysoker & Seva Kashin & Bernardo L. Sabatini & Steven A, 2022. "Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Zhiyuan Liu & Dafei Wu & Weiwei Zhai & Liang Ma, 2023. "SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Xinyi Zhang & Xiao Wang & G. V. Shivashankar & Caroline Uhler, 2022. "Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Bohan Li & Feng Bao & Yimin Hou & Fengji Li & Hongjue Li & Yue Deng & Qionghai Dai, 2024. "Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26044-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.