IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37472-2.html
   My bibliography  Save this article

All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing

Author

Listed:
  • Saket Kaushal

    (Institut National de la Recherche Scientifique)

  • A. Aadhi

    (Institut National de la Recherche Scientifique)

  • Anthony Roberge

    (Polytechnique Montréal)

  • Roberto Morandotti

    (Institut National de la Recherche Scientifique)

  • Raman Kashyap

    (Polytechnique Montréal
    Polytechnique Montréal)

  • José Azaña

    (Institut National de la Recherche Scientifique)

Abstract

Photonic-based implementation of advanced computing tasks is a potential alternative to mitigate the bandwidth limitations of electronics. Despite the inherent advantage of a large bandwidth, photonic systems are generally bulky and power-hungry. In this respect, all-pass spectral phase filters enable simultaneous ultrahigh speed operation and minimal power consumption for a wide range of signal processing functionalities. Yet, phase filters offering GHz to sub-GHz frequency resolution in practical, integrated platforms have remained elusive. We report a fibre Bragg grating-based phase filter with a record frequency resolution of 1 GHz, at least 10× improvement compared to a conventional optical waveshaper. The all-fibre phase filter is employed to experimentally realize high-speed fully passive NOT and XNOR logic operations. We demonstrate inversion of a 45-Gbps 127-bit random sequence with an energy consumption of ~34 fJ/bit, and XNOR logic at a bit rate of 10.25 Gbps consuming ~425 fJ/bit. The scalable implementation of phase filters provides a promising path towards widespread deployment of compact, low-energy-consuming signal processors.

Suggested Citation

  • Saket Kaushal & A. Aadhi & Anthony Roberge & Roberto Morandotti & Raman Kashyap & José Azaña, 2023. "All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37472-2
    DOI: 10.1038/s41467-023-37472-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37472-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37472-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angelos Xomalis & Iosif Demirtzioglou & Eric Plum & Yongmin Jung & Venkatram Nalla & Cosimo Lacava & Kevin F. MacDonald & Periklis Petropoulos & David J. Richardson & Nikolay I. Zheludev, 2018. "Fibre-optic metadevice for all-optical signal modulation based on coherent absorption," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    2. Senfeng Zeng & Chunsen Liu & Xiaohe Huang & Zhaowu Tang & Liwei Liu & Peng Zhou, 2022. "An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Michael Kues & Christian Reimer & Piotr Roztocki & Luis Romero Cortés & Stefania Sciara & Benjamin Wetzel & Yanbing Zhang & Alfonso Cino & Sai T. Chu & Brent E. Little & David J. Moss & Lucia Caspani , 2017. "On-chip generation of high-dimensional entangled quantum states and their coherent control," Nature, Nature, vol. 546(7660), pages 622-626, June.
    4. Lars S. Madsen & Fabian Laudenbach & Mohsen Falamarzi. Askarani & Fabien Rortais & Trevor Vincent & Jacob F. F. Bulmer & Filippo M. Miatto & Leonhard Neuhaus & Lukas G. Helt & Matthew J. Collins & Adr, 2022. "Quantum computational advantage with a programmable photonic processor," Nature, Nature, vol. 606(7912), pages 75-81, June.
    5. Zijiao Yang & Mandana Jahanbozorgi & Dongin Jeong & Shuman Sun & Olivier Pfister & Hansuek Lee & Xu Yi, 2021. "A squeezed quantum microcomb on a chip," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    7. Xingyuan Xu & Mengxi Tan & Bill Corcoran & Jiayang Wu & Andreas Boes & Thach G. Nguyen & Sai T. Chu & Brent E. Little & Damien G. Hicks & Roberto Morandotti & Arnan Mitchell & David J. Moss, 2021. "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Nature, vol. 589(7840), pages 44-51, January.
    8. Reza Maram & James van Howe & Deming Kong & Francesco Da Ros & Pengyu Guan & Michael Galili & Roberto Morandotti & Leif Katsuo Oxenløwe & José Azaña, 2020. "Frequency-domain ultrafast passive logic: NOT and XNOR gates," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yiwei Li & Ning An & Zheyi Lu & Yuchen Wang & Bing Chang & Teng Tan & Xuhan Guo & Xizhen Xu & Jun He & Handing Xia & Zhaohui Wu & Yikai Su & Yuan Liu & Yunjiang Rao & Giancarlo Soavi & Baicheng Yao, 2022. "Nonlinear co-generation of graphene plasmons for optoelectronic logic operations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    5. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    6. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    8. Erik Champion & Hafizur Rahaman, 2019. "3D Digital Heritage Models as Sustainable Scholarly Resources," Sustainability, MDPI, vol. 11(8), pages 1-8, April.
    9. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    10. Jörg Leicher & Anne Giese & Christoph Wieland, 2024. "Electrification or Hydrogen? The Challenge of Decarbonizing Industrial (High-Temperature) Process Heat," J, MDPI, vol. 7(4), pages 1-18, October.
    11. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    12. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
    14. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    15. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Stefano Bianchini & Giacomo Damioli & Claudia Ghisetti, 2023. "The environmental effects of the “twin” green and digital transition in European regions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 877-918, April.
    18. Jose Loyola-Fuentes & Luca Pietrasanta & Marco Marengo & Francesco Coletti, 2022. "Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes," Energies, MDPI, vol. 15(6), pages 1-20, March.
    19. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37472-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.