A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-37097-5
Download full text from publisher
References listed on IDEAS
- M. R. Mahmoodi & M. Prezioso & D. B. Strukov, 2019. "Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- M. Prezioso & M. R. Mahmoodi & F. Merrikh Bayat & H. Nili & H. Kim & A. Vincent & D. B. Strukov, 2018. "Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Wu, Fuqiang & Kang, Ting & Shao, Yan & Wang, Qingyun, 2023. "Stability of Hopfield neural network with resistive and magnetic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022.
"Artificial intelligence and systemic risk,"
Journal of Banking & Finance, Elsevier, vol. 140(C).
- Danielsson, Jon & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," LSE Research Online Documents on Economics 111601, London School of Economics and Political Science, LSE Library.
- Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
- Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
- Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
- Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
- Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
- José A. Torres-León & Marco A. Moreno-Armendáriz & Hiram Calvo, 2024. "Representing the Information of Multiplayer Online Battle Arena (MOBA) Video Games Using Convolutional Accordion Auto-Encoder (A 2 E) Enhanced by Attention Mechanisms," Mathematics, MDPI, vol. 12(17), pages 1-19, September.
- Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Yanyun Ren & Xiaobo Bu & Ming Wang & Yue Gong & Junjie Wang & Yuyang Yang & Guijun Li & Meng Zhang & Ye Zhou & Su-Ting Han, 2022. "Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
- Karwowski, Jan & Mańdziuk, Jacek, 2019. "A Monte Carlo Tree Search approach to finding efficient patrolling schemes on graphs," European Journal of Operational Research, Elsevier, vol. 277(1), pages 255-268.
- Young Joon Park & Yoon Sang Cho & Seoung Bum Kim, 2019. "Multi-agent reinforcement learning with approximate model learning for competitive games," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.
- Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37097-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.