IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxviiy2024i2p465-477.html
   My bibliography  Save this article

Negative Faces of Artificial Intelligence in the Conditions of the Knowledge-Based Economy

Author

Listed:
  • Artur Kwasek
  • Maria Kocot
  • Izabela Gontarek
  • Igor Protasowicki
  • Bartosz Blaszczak

Abstract

Purpose: The purpose of this article is to identify and analyze concerns related to the use of artificial intelligence (AI) in the Knowledge Economy (KBE) environment. The study focuses on understanding which aspects of AI technology are the most feared in society and how these concerns interact. Design/Methodology/Approach: The survey was conducted in January 2024 on a sample of 956 students from three universities in Poland. A survey method was used in which respondents rated their concerns about various negative aspects related to AI on a five-point Likert scale. The data were statistically analyzed to determine the level of concern in each category and the correlations between them. Findings: The results of the survey show that respondents' greatest concerns are about AI taking control of ICT systems and the potential impact of AI on mass unemployment and social inequality. A significant number of respondents also expressed concerns about the takeover of humanity and the destruction of humanity by advanced AI systems. Correlational analysis revealed that these concerns are strongly linked, suggesting that risk perceptions in different areas influence each other. Practical Implications: Understanding AI concerns in the context of GOW is essential to developing risk management strategies and creating regulations that ensure the safe and ethical implementation of AI. The results of the research can help policymakers identify key areas for intervention and take action to increase public awareness of the potential risks of AI. Originality/Value: The article makes a unique contribution to the literature by focusing on the negative aspects of AI in the context of the Knowledge Economy and analyzing the perception of fears among students who constitute the future management and decision-making staff. The study provides new insights into the interconnectedness of AI concerns, which could provide a basis for further research and discussion on the ethical and social implications of AI deployment.

Suggested Citation

  • Artur Kwasek & Maria Kocot & Izabela Gontarek & Igor Protasowicki & Bartosz Blaszczak, 2024. "Negative Faces of Artificial Intelligence in the Conditions of the Knowledge-Based Economy," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 465-477.
  • Handle: RePEc:ers:journl:v:xxvii:y:2024:i:2:p:465-477
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/3412/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leonel Prieto & Md Farid Talukder, 2023. "Resilient Agility: A Necessary Condition for Employee and Organizational Sustainability," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    2. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    2. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    3. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Ostheimer, Julia & Chowdhury, Soumitra & Iqbal, Sarfraz, 2021. "An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles," Technology in Society, Elsevier, vol. 66(C).
    6. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    7. Rui Wang & Ming Lyu & Jie Zhang, 2025. "A Multi-Robot Collaborative Exploration Method Based on Deep Reinforcement Learning and Knowledge Distillation," Mathematics, MDPI, vol. 13(1), pages 1-17, January.
    8. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    9. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Bossert, Leonie & Hagendorff, Thilo, 2021. "Animals and AI. The role of animals in AI research and application – An overview and ethical evaluation," Technology in Society, Elsevier, vol. 67(C).
    12. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    13. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    14. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    15. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    16. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    17. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    18. Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
    19. Ma, Tao & Yang, Xuzhi & Szabo, Zoltan, 2024. "To switch or not to switch? Balanced policy switching in offline reinforcement learning," LSE Research Online Documents on Economics 124144, London School of Economics and Political Science, LSE Library.
    20. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.

    More about this item

    Keywords

    Artificial intelligence; Knowledge Economy; ICT technology.;
    All these keywords.

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxvii:y:2024:i:2:p:465-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.