IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22520-6.html
   My bibliography  Save this article

Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation

Author

Listed:
  • Huajun Qin

    (Aalto University School of Science)

  • Rasmus B. Holländer

    (Aalto University School of Science)

  • Lukáš Flajšman

    (Aalto University School of Science)

  • Felix Hermann

    (Aalto University School of Science
    Physikalisches Institut, Karlsruhe Institute of Technology)

  • Rouven Dreyer

    (Martin Luther University Halle-Wittenberg)

  • Georg Woltersdorf

    (Martin Luther University Halle-Wittenberg)

  • Sebastiaan van Dijken

    (Aalto University School of Science)

Abstract

Active control of propagating spin waves on the nanoscale is essential for beyond-CMOS magnonic computing. Here, we experimentally demonstrate reconfigurable spin-wave transport in a hybrid YIG-based material structure that operates as a Fabry-Pérot nanoresonator. The magnonic resonator is formed by a local frequency downshift of the spin-wave dispersion relation in a continuous YIG film caused by dynamic dipolar coupling to a ferromagnetic metal nanostripe. Drastic downscaling of the spin-wave wavelength within the bilayer region enables programmable control of propagating spin waves on a length scale that is only a fraction of their wavelength. Depending on the stripe width, the device structure offers full nonreciprocity, tunable spin-wave filtering, and nearly zero transmission loss at allowed frequencies. Our results provide a practical route for the implementation of low-loss YIG-based magnonic devices with controllable transport properties.

Suggested Citation

  • Huajun Qin & Rasmus B. Holländer & Lukáš Flajšman & Felix Hermann & Rouven Dreyer & Georg Woltersdorf & Sebastiaan van Dijken, 2021. "Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22520-6
    DOI: 10.1038/s41467-021-22520-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22520-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22520-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Rouven Dreyer & Alexander F. Schäffer & Hans G. Bauer & Niklas Liebing & Jamal Berakdar & Georg Woltersdorf, 2022. "Imaging and phase-locking of non-linear spin waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22520-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.