IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32224-0.html
   My bibliography  Save this article

Imaging and phase-locking of non-linear spin waves

Author

Listed:
  • Rouven Dreyer

    (Martin Luther University Halle-Wittenberg)

  • Alexander F. Schäffer

    (Martin Luther University Halle-Wittenberg)

  • Hans G. Bauer

    (Jahnstrasse 23)

  • Niklas Liebing

    (Martin Luther University Halle-Wittenberg)

  • Jamal Berakdar

    (Martin Luther University Halle-Wittenberg)

  • Georg Woltersdorf

    (Martin Luther University Halle-Wittenberg
    Max Planck Institute of Microstructure Physics)

Abstract

Non-linear processes are a key feature in the emerging field of spin-wave based information processing and allow to convert uniform spin-wave excitations into propagating modes at different frequencies. Recently, the existence of non-linear magnons at half-integer multiples of the driving frequency has been predicted for Ni80Fe20 at low bias fields. However, it is an open question under which conditions such non-linear spin waves emerge coherently and how they may be used in device structures. Usually non-linear processes are explored in the small modulation regime and result in the well known three and four magnon scattering processes. Here we demonstrate and image a class of spin waves oscillating at half-integer harmonics that have only recently been proposed for the strong modulation regime. The direct imaging of these parametrically generated magnons in Ni80Fe20 elements allows to visualize their wave vectors. In addition, we demonstrate the presence of two degenerate phase states that may be selected by external phase-locking. These results open new possibilities for applications such as spin-wave sources, amplifiers and phase-encoded information processing with magnons.

Suggested Citation

  • Rouven Dreyer & Alexander F. Schäffer & Hans G. Bauer & Niklas Liebing & Jamal Berakdar & Georg Woltersdorf, 2022. "Imaging and phase-locking of non-linear spin waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32224-0
    DOI: 10.1038/s41467-022-32224-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32224-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32224-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boris Divinskiy & Sergei Urazhdin & Sergej O. Demokritov & Vladislav E. Demidov, 2019. "Controlled nonlinear magnetic damping in spin-Hall nano-devices," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. R. Lebrun & S. Tsunegi & P. Bortolotti & H. Kubota & A. S. Jenkins & M. Romera & K. Yakushiji & A. Fukushima & J. Grollier & S. Yuasa & V. Cros, 2017. "Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    3. Huajun Qin & Rasmus B. Holländer & Lukáš Flajšman & Felix Hermann & Rouven Dreyer & Georg Woltersdorf & Sebastiaan van Dijken, 2021. "Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Mohammad Haidar & Ahmad A. Awad & Mykola Dvornik & Roman Khymyn & Afshin Houshang & Johan Åkerman, 2019. "A single layer spin-orbit torque nano-oscillator," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    5. V. E. Demidov & H. Ulrichs & S. V. Gurevich & S. O. Demokritov & V. S. Tiberkevich & A. N. Slavin & A. Zholud & S. Urazhdin, 2014. "Synchronization of spin Hall nano-oscillators to external microwave signals," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    6. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Flavio Abreu Araujo & Vincent Cros & Paolo Bortolotti & Juan Trastoy & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Maxence E, 2018. "Vowel recognition with four coupled spin-torque nano-oscillators," Nature, Nature, vol. 563(7730), pages 230-234, November.
    7. Shehzaad Kaka & Matthew R. Pufall & William H. Rippard & Thomas J. Silva & Stephen E. Russek & Jordan A. Katine, 2005. "Mutual phase-locking of microwave spin torque nano-oscillators," Nature, Nature, vol. 437(7057), pages 389-392, September.
    8. Xufeng Zhang & Chang-Ling Zou & Na Zhu & Florian Marquardt & Liang Jiang & Hong X. Tang, 2015. "Magnon dark modes and gradient memory," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    9. Brendan A. McCullian & Ahmed M. Thabt & Benjamin A. Gray & Alex L. Melendez & Michael S. Wolf & Vladimir L. Safonov & Denis V. Pelekhov & Vidya P. Bhallamudi & Michael R. Page & P. Chris Hammel, 2020. "Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    10. Chuanpu Liu & Jilei Chen & Tao Liu & Florian Heimbach & Haiming Yu & Yang Xiao & Junfeng Hu & Mengchao Liu & Houchen Chang & Tobias Stueckler & Sa Tu & Youguang Zhang & Yan Zhang & Peng Gao & Zhimin L, 2018. "Long-distance propagation of short-wavelength spin waves," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. An & M. Xu & A. Mucchietto & C. Kim & K.-W. Moon & C. Hwang & D. Grundler, 2024. "Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Vincent Cros & Paolo Bortolotti & Maxence Ernoult & Damien Querlioz & Julie Grol, 2022. "Binding events through the mutual synchronization of spintronic nano-neurons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Haowen Ren & Xin Yu Zheng & Sanyum Channa & Guanzhong Wu & Daisy A. O’Mahoney & Yuri Suzuki & Andrew D. Kent, 2023. "Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    7. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Lakhan Bainsla & Bing Zhao & Nilamani Behera & Anamul Md. Hoque & Lars Sjöström & Anna Martinelli & Mahmoud Abdel-Hafiez & Johan Åkerman & Saroj P. Dash, 2024. "Large out-of-plane spin–orbit torque in topological Weyl semimetal TaIrTe4," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. S. Jiang & S. Chung & M. Ahlberg & A. Frisk & R. Khymyn & Q. Tuan Le & H. Mazraati & A. Houshang & O. Heinonen & J. Åkerman, 2024. "Magnetic droplet soliton pairs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Keqiang Zhu & Mario Carpentieri & Like Zhang & Bin Fang & Jialin Cai & Roman Verba & Anna Giordano & Vito Puliafito & Baoshun Zhang & Giovanni Finocchio & Zhongming Zeng, 2023. "Nonlinear amplification of microwave signals in spin-torque oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Amirhossein Nazerian & Joseph D. Hart & Matteo Lodi & Francesco Sorrentino, 2024. "The efficiency of synchronization dynamics and the role of network syncreactivity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Alexander Savvin & Alexander Dormidonov & Evgeniya Smetanina & Vladimir Mitrokhin & Evgeniy Lipatov & Dmitriy Genin & Sergey Potanin & Alexander Yelisseyev & Viktor Vins, 2021. "NV– diamond laser," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Isidore Komofor Ngongiah & Balamurali Ramakrishnan & Hayder Natiq & Justin Roger Mboupda Pone & Gaetan Fautso Kuiate, 2022. "Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    20. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32224-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.