IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37024-8.html
   My bibliography  Save this article

Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition

Author

Listed:
  • Zaida Vergara

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco)

  • María S. Gomez

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco)

  • Bénédicte Desvoyes

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco)

  • Joana Sequeira-Mendes

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco)

  • Kinda Masoud

    (Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg)

  • Celina Costas

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco
    ANFACO-CECOPESCA)

  • Sandra Noir

    (Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg)

  • Elena Caro

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco
    Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA))

  • Victoria Mora-Gil

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco)

  • Pascal Genschik

    (Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg)

  • Crisanto Gutierrez

    (Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco)

Abstract

Most cellular proteins involved in genome replication are conserved in all eukaryotic lineages including yeast, plants and animals. However, the mechanisms controlling their availability during the cell cycle are less well defined. Here we show that the Arabidopsis genome encodes for two ORC1 proteins highly similar in amino acid sequence and that have partially overlapping expression domains but with distinct functions. The ancestral ORC1b gene, present before the partial duplication of the Arabidopsis genome, has retained the canonical function in DNA replication. ORC1b is expressed in both proliferating and endoreplicating cells, accumulates during G1 and is rapidly degraded upon S-phase entry through the ubiquitin-proteasome pathway. In contrast, the duplicated ORC1a gene has acquired a specialized function in heterochromatin biology. ORC1a is required for efficient deposition of the heterochromatic H3K27me1 mark by the ATXR5/6 histone methyltransferases. The distinct roles of the two ORC1 proteins may be a feature common to other organisms with duplicated ORC1 genes and a major difference with animal cells.

Suggested Citation

  • Zaida Vergara & María S. Gomez & Bénédicte Desvoyes & Joana Sequeira-Mendes & Kinda Masoud & Celina Costas & Sandra Noir & Elena Caro & Victoria Mora-Gil & Pascal Genschik & Crisanto Gutierrez, 2023. "Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37024-8
    DOI: 10.1038/s41467-023-37024-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37024-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37024-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yannick Jacob & Hume Stroud & Chantal LeBlanc & Suhua Feng & Luting Zhuo & Elena Caro & Christiane Hassel & Crisanto Gutierrez & Scott D. Michaels & Steven E. Jacobsen, 2010. "Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases," Nature, Nature, vol. 466(7309), pages 987-991, August.
    2. Ferdos Abid Ali & Max E. Douglas & Julia Locke & Valerie E. Pye & Andrea Nans & John F. X. Diffley & Alessandro Costa, 2017. "Cryo-EM structure of a licensed DNA replication origin," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Joseph T. P. Yeeles & Tom D. Deegan & Agnieszka Janska & Anne Early & John F. X. Diffley, 2015. "Regulated eukaryotic DNA replication origin firing with purified proteins," Nature, Nature, vol. 519(7544), pages 431-435, March.
    4. Alex J. Kuo & Jikui Song & Peggie Cheung & Satoko Ishibe-Murakami & Sayumi Yamazoe & James K. Chen & Dinshaw J. Patel & Or Gozani, 2012. "The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome," Nature, Nature, vol. 484(7392), pages 115-119, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Li & Jincong Zhou & Shuai Li & Weifeng Zhang & Yingxue Du & Kuan Li & Yingxiang Wang & Qianwen Sun, 2023. "DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humberto Sánchez & Zhaowei Liu & Edo Veen & Theo Laar & John F. X. Diffley & Nynke H. Dekker, 2023. "A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Sai Li & Michael R. Wasserman & Olga Yurieva & Lu Bai & Michael E. O’Donnell & Shixin Liu, 2022. "Nucleosome-directed replication origin licensing independent of a consensus DNA sequence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Jiaxuan Cheng & Ningning Li & Yunjing Huo & Shangyu Dang & Bik-Kwoon Tye & Ning Gao & Yuanliang Zhai, 2022. "Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Aftab Amin & Cheung Man Hei & Chun Liang & Aftab Amin & Cheung Man Hei & Chun Liang & Chun Liang & Aftab Amin & Cheung Man Hei & Chun Liang, 2019. "DNA Replication-Initiation Proteins in Eukaryotic Cells," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 22(5), pages 17042-17049, December.
    5. Aina Maria Mas & Enrique Goñi & Igor Ruiz de los Mozos & Aida Arcas & Luisa Statello & Jovanna González & Lorea Blázquez & Wei Ting Chelsea Lee & Dipika Gupta & Álvaro Sejas & Shoko Hoshina & Alexandr, 2023. "ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Dayana E. Salas-Leiva & Eelco C. Tromer & Bruce A. Curtis & Jon Jerlström-Hultqvist & Martin Kolisko & Zhenzhen Yi & Joan S. Salas-Leiva & Lucie Gallot-Lavallée & Shelby K. Williams & Geert J. P. L. K, 2021. "Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Zhen Wang & Claudia M. Castillo-González & Changjiang Zhao & Chun-Yip Tong & Changhao Li & Songxiao Zhong & Zhiyang Liu & Kaili Xie & Jiaying Zhu & Zhongshou Wu & Xu Peng & Yannick Jacob & Scott D. Mi, 2023. "H3.1K27me1 loss confers Arabidopsis resistance to Geminivirus by sequestering DNA repair proteins onto host genome," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Almutasem Saleh & Yasunori Noguchi & Ricardo Aramayo & Marina E. Ivanova & Kathryn M. Stevens & Alex Montoya & S. Sunidhi & Nicolas Lopez Carranza & Marcin J. Skwark & Christian Speck, 2022. "The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Hana Polasek-Sedlackova & Thomas C. R. Miller & Jana Krejci & Maj-Britt Rask & Jiri Lukas, 2022. "Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37024-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.