IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51538-9.html
   My bibliography  Save this article

MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing

Author

Listed:
  • L. Maximilian Reuter

    (Imperial College London
    Ackermannweg 4)

  • Sanjay P. Khadayate

    (MRC London Institute of Medical Sciences (LMS))

  • Audrey Mossler

    (Imperial College London)

  • Korbinian Liebl

    (The University of Chicago)

  • Sarah V. Faull

    (Imperial College London)

  • Mohammad M. Karimi

    (MRC London Institute of Medical Sciences (LMS)
    King’s College London)

  • Christian Speck

    (Imperial College London
    MRC London Institute of Medical Sciences (LMS))

Abstract

Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.

Suggested Citation

  • L. Maximilian Reuter & Sanjay P. Khadayate & Audrey Mossler & Korbinian Liebl & Sarah V. Faull & Mohammad M. Karimi & Christian Speck, 2024. "MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51538-9
    DOI: 10.1038/s41467-024-51538-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51538-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51538-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph T. P. Yeeles & Tom D. Deegan & Agnieszka Janska & Anne Early & John F. X. Diffley, 2015. "Regulated eukaryotic DNA replication origin firing with purified proteins," Nature, Nature, vol. 519(7544), pages 431-435, March.
    2. Jan Marten Schmidt & Franziska Bleichert, 2020. "Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    3. Ningning Li & Wai Hei Lam & Yuanliang Zhai & Jiaxuan Cheng & Erchao Cheng & Yongqian Zhao & Ning Gao & Bik-Kwoon Tye, 2018. "Structure of the origin recognition complex bound to DNA replication origin," Nature, Nature, vol. 559(7713), pages 217-222, July.
    4. Thomas C. R. Miller & Julia Locke & Julia F. Greiwe & John F. X. Diffley & Alessandro Costa, 2019. "Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM," Nature, Nature, vol. 575(7784), pages 704-710, November.
    5. Ferdos Abid Ali & Max E. Douglas & Julia Locke & Valerie E. Pye & Andrea Nans & John F. X. Diffley & Alessandro Costa, 2017. "Cryo-EM structure of a licensed DNA replication origin," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humberto Sánchez & Zhaowei Liu & Edo Veen & Theo Laar & John F. X. Diffley & Nynke H. Dekker, 2023. "A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Sai Li & Michael R. Wasserman & Olga Yurieva & Lu Bai & Michael E. O’Donnell & Shixin Liu, 2022. "Nucleosome-directed replication origin licensing independent of a consensus DNA sequence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Yue Wu & Qiongdan Zhang & Yuhan Lin & Wai Hei Lam & Yuanliang Zhai, 2024. "Replication licensing regulated by a short linear motif within an intrinsically disordered region of origin recognition complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jiaxuan Cheng & Ningning Li & Yunjing Huo & Shangyu Dang & Bik-Kwoon Tye & Ning Gao & Yuanliang Zhai, 2022. "Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Zaida Vergara & María S. Gomez & Bénédicte Desvoyes & Joana Sequeira-Mendes & Kinda Masoud & Celina Costas & Sandra Noir & Elena Caro & Victoria Mora-Gil & Pascal Genschik & Crisanto Gutierrez, 2023. "Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Hana Polasek-Sedlackova & Thomas C. R. Miller & Jana Krejci & Maj-Britt Rask & Jiri Lukas, 2022. "Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Dayana E. Salas-Leiva & Eelco C. Tromer & Bruce A. Curtis & Jon Jerlström-Hultqvist & Martin Kolisko & Zhenzhen Yi & Joan S. Salas-Leiva & Lucie Gallot-Lavallée & Shelby K. Williams & Geert J. P. L. K, 2021. "Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Ananya Acharya & Hélène Bret & Jen-Wei Huang & Martin Mütze & Martin Göse & Vera Maria Kissling & Ralf Seidel & Alberto Ciccia & Raphaël Guérois & Petr Cejka, 2024. "Mechanism of DNA unwinding by MCM8-9 in complex with HROB," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Aftab Amin & Cheung Man Hei & Chun Liang & Aftab Amin & Cheung Man Hei & Chun Liang & Chun Liang & Aftab Amin & Cheung Man Hei & Chun Liang, 2019. "DNA Replication-Initiation Proteins in Eukaryotic Cells," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 22(5), pages 17042-17049, December.
    12. Almutasem Saleh & Yasunori Noguchi & Ricardo Aramayo & Marina E. Ivanova & Kathryn M. Stevens & Alex Montoya & S. Sunidhi & Nicolas Lopez Carranza & Marcin J. Skwark & Christian Speck, 2022. "The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    13. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51538-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.