IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43680-7.html
   My bibliography  Save this article

DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis

Author

Listed:
  • Qin Li

    (Tsinghua University)

  • Jincong Zhou

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Shuai Li

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Weifeng Zhang

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Yingxue Du

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Kuan Li

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences
    Chinese Institute for Brain Research)

  • Yingxiang Wang

    (College of Life Science, South China Agricultural University, Guangdong Laboratory for Lingnan Morden Agriculture
    Fudan University)

  • Qianwen Sun

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

Abstract

Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.

Suggested Citation

  • Qin Li & Jincong Zhou & Shuai Li & Weifeng Zhang & Yingxue Du & Kuan Li & Yingxiang Wang & Qianwen Sun, 2023. "DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43680-7
    DOI: 10.1038/s41467-023-43680-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43680-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43680-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zaida Vergara & María S. Gomez & Bénédicte Desvoyes & Joana Sequeira-Mendes & Kinda Masoud & Celina Costas & Sandra Noir & Elena Caro & Victoria Mora-Gil & Pascal Genschik & Crisanto Gutierrez, 2023. "Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Gabriel Balmus & Domenic Pilger & Julia Coates & Mukerrem Demir & Matylda Sczaniecka-Clift & Ana C. Barros & Michael Woods & Beiyuan Fu & Fengtang Yang & Elisabeth Chen & Matthias Ostermaier & Tatjana, 2019. "ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aris A. Polyzos & Ana Cheong & Jung Hyun Yoo & Lana Blagec & Sneh M. Toprani & Zachary D. Nagel & Cynthia T. McMurray, 2024. "Base excision repair and double strand break repair cooperate to modulate the formation of unrepaired double strand breaks in mouse brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Weifeng Zhang & Zhuo Yang & Wenjie Wang & Qianwen Sun, 2024. "Primase promotes the competition between transcription and replication on the same template strand resulting in DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    2. Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Junho Kim & August Yue Huang & Shelby L. Johnson & Jenny Lai & Laura Isacco & Ailsa M. Jeffries & Michael B. Miller & Michael A. Lodato & Christopher A. Walsh & Eunjung Alice Lee, 2022. "Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Hanrui Zhang & Julian Kreis & Sven-Eric Schelhorn & Heike Dahmen & Thomas Grombacher & Michael Zühlsdorf & Frank T. Zenke & Yuanfang Guan, 2023. "Mapping combinatorial drug effects to DNA damage response kinase inhibitors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Diana Rubio-Contreras & Fernando Gómez-Herreros, 2023. "TDP1 suppresses chromosomal translocations and cell death induced by abortive TOP1 activity during gene transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43680-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.