IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33887-5.html
   My bibliography  Save this article

Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes

Author

Listed:
  • Hana Polasek-Sedlackova

    (University of Copenhagen
    Institute of Biophysics, Czech Academy of Sciences)

  • Thomas C. R. Miller

    (University of Copenhagen)

  • Jana Krejci

    (Institute of Biophysics, Czech Academy of Sciences)

  • Maj-Britt Rask

    (University of Copenhagen)

  • Jiri Lukas

    (University of Copenhagen)

Abstract

Genome duplication is safeguarded by constantly adjusting the activity of the replicative CMG (CDC45-MCM2-7-GINS) helicase. However, minichromosome maintenance proteins (MCMs)—the structural core of the CMG helicase—have never been visualized at sites of DNA synthesis inside a cell (the so-called MCM paradox). Here, we solve this conundrum by showing that anti-MCM antibodies primarily detect inactive MCMs. Upon conversion of inactive MCMs to CMGs, factors that are required for replisome activity bind to the MCM scaffold and block MCM antibody binding sites. Tagging of endogenous MCMs by CRISPR-Cas9 bypasses this steric hindrance and enables MCM visualization at active replisomes. Thus, by defining conditions for detecting the structural core of the replicative CMG helicase, our results explain the MCM paradox, provide visual proof that MCMs are an integral part of active replisomes in vivo, and enable the investigation of replication dynamics in living cells exposed to a constantly changing environment.

Suggested Citation

  • Hana Polasek-Sedlackova & Thomas C. R. Miller & Jana Krejci & Maj-Britt Rask & Jiri Lukas, 2022. "Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33887-5
    DOI: 10.1038/s41467-022-33887-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33887-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33887-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas C. R. Miller & Julia Locke & Julia F. Greiwe & John F. X. Diffley & Alessandro Costa, 2019. "Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM," Nature, Nature, vol. 575(7784), pages 704-710, November.
    2. Hana Sedlackova & Maj-Britt Rask & Rajat Gupta & Chunaram Choudhary & Kumar Somyajit & Jiri Lukas, 2020. "Equilibrium between nascent and parental MCM proteins protects replicating genomes," Nature, Nature, vol. 587(7833), pages 297-302, November.
    3. James M. Dewar & Magda Budzowska & Johannes C. Walter, 2015. "The mechanism of DNA replication termination in vertebrates," Nature, Nature, vol. 525(7569), pages 345-350, September.
    4. Ferdos Abid Ali & Max E. Douglas & Julia Locke & Valerie E. Pye & Andrea Nans & John F. X. Diffley & Alessandro Costa, 2017. "Cryo-EM structure of a licensed DNA replication origin," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Maximilian Reuter & Sanjay P. Khadayate & Audrey Mossler & Korbinian Liebl & Sarah V. Faull & Mohammad M. Karimi & Christian Speck, 2024. "MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Humberto Sánchez & Zhaowei Liu & Edo Veen & Theo Laar & John F. X. Diffley & Nynke H. Dekker, 2023. "A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Yue Wu & Qiongdan Zhang & Yuhan Lin & Wai Hei Lam & Yuanliang Zhai, 2024. "Replication licensing regulated by a short linear motif within an intrinsically disordered region of origin recognition complex," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Ananya Acharya & Hélène Bret & Jen-Wei Huang & Martin Mütze & Martin Göse & Vera Maria Kissling & Ralf Seidel & Alberto Ciccia & Raphaël Guérois & Petr Cejka, 2024. "Mechanism of DNA unwinding by MCM8-9 in complex with HROB," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Jiaxuan Cheng & Ningning Li & Yunjing Huo & Shangyu Dang & Bik-Kwoon Tye & Ning Gao & Yuanliang Zhai, 2022. "Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Zaida Vergara & María S. Gomez & Bénédicte Desvoyes & Joana Sequeira-Mendes & Kinda Masoud & Celina Costas & Sandra Noir & Elena Caro & Victoria Mora-Gil & Pascal Genschik & Crisanto Gutierrez, 2023. "Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Sai Li & Michael R. Wasserman & Olga Yurieva & Lu Bai & Michael E. O’Donnell & Shixin Liu, 2022. "Nucleosome-directed replication origin licensing independent of a consensus DNA sequence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Almutasem Saleh & Yasunori Noguchi & Ricardo Aramayo & Marina E. Ivanova & Kathryn M. Stevens & Alex Montoya & S. Sunidhi & Nicolas Lopez Carranza & Marcin J. Skwark & Christian Speck, 2022. "The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Mattheus H. E. Wildschut & Julien Mena & Cyril Dördelmann & Marc Oostrum & Benjamin D. Hale & Jens Settelmeier & Yasmin Festl & Veronika Lysenko & Patrick M. Schürch & Alexander Ring & Yannik Severin , 2023. "Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33887-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.